磁刺激
脑电图
精神分裂症(面向对象编程)
神经影像学
情绪障碍
神经科学
脑刺激
心理学
认知
深部经颅磁刺激
心情
神经调节
精神科
刺激
焦虑
作者
Fabio Ferrarelli,Mary L. Phillips
标识
DOI:10.1176/appi.ajp.2020.20071050
摘要
Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique uniquely equipped to both examine and modulate neural systems and related cognitive and behavioral functions in humans. As an examination tool, TMS can be used in combination with EEG (TMS-EEG) to elucidate directly, objectively, and noninvasively the intrinsic properties of a specific cortical region, including excitation, inhibition, reactivity, and oscillatory activity, irrespective of the individual’s conscious effort. Additionally, when applied in repetitive patterns, TMS has been shown to modulate brain networks in healthy individuals, as well as ameliorate symptoms in individuals with psychiatric disorders. The key role of TMS in assessing and modulating neural dysfunctions and associated clinical and cognitive deficits in psychiatric populations is therefore becoming increasingly evident. In this article, the authors review TMS-EEG studies in schizophrenia and mood disorders, as most TMS-EEG studies to date have focused on individuals with these disorders. The authors present the evidence on the efficacy of repetitive TMS (rTMS) and theta burst stimulation (TBS), when targeting specific cortical areas, in modulating neural circuits and ameliorating symptoms and abnormal behaviors in individuals with psychiatric disorders, especially when informed by resting-state and task-related neuroimaging measures. Examples of how the combination of TMS-EEG assessments and rTMS and TBS paradigms can be utilized to both characterize and modulate neural circuit alterations in individuals with psychiatric disorders are also provided. This approach, along with the evaluation of the behavioral effects of TMS-related neuromodulation, has the potential to lead to the development of more effective and personalized interventions for individuals with psychiatric disorders.
科研通智能强力驱动
Strongly Powered by AbleSci AI