离群值
加权
粒子群优化
标准差
先验与后验
方案(数学)
计算机科学
数学优化
数学
算法
应用数学
统计
物理
数学分析
哲学
认识论
声学
作者
Zhengshuai Wang,Chuanguang Zhu,Hongzhen Zhang,Kang Jian-rong,Jinshan Hu
出处
期刊:Survey Review
[Taylor & Francis]
日期:2021-08-17
卷期号:54 (386): 429-439
被引量:1
标识
DOI:10.1080/00396265.2021.1964255
摘要
This paper introduces a framework for robustly estimating the parameters of the probability integral method (PIM). According to the framework, the initial robust estimates of the PIM parameters are firstly obtained by combining the cultural algorithm and rand particle swarm optimisation (CA-rPSO) with the LTS method. As a byproduct, an initial standard deviation can be calculated and used to determine the initial weights of the measurements according to the Institute of Geodesy and Geophysics (IGGIII) down-weighting scheme. Meanwhile, a modified CA-rPSO (referred to as CA-rPSO-IGGIII) is constructed, where the IGGIII scheme is introduced to alleviate the adverse influence of outliers. Then, the initial robust estimates and the standard deviation can act as a priori information for the CA-rPSO-IGGGIII to search for the optimal estimates. Experiments with simulated and real data demonstrate that the proposed method can robustly estimate the PIM parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI