Reducing False-Positive Screening MRI Rate in Women with Extremely Dense Breasts Using Prediction Models Based on Data from the DENSE Trial

医学 放射科 假阳性率 人工智能 计算机科学
作者
Bianca M. den Dekker,Marije F. Bakker,Stéphanie V. de Lange,Wouter B. Veldhuis,P. J. van Diest,Katya M. Duvivier,Marc B. I. Lobbes,Claudette E. Loo,Ritse M. Mann,Evelyn M. Monninkhof,Jeroen Veltman,Ruud M. Pijnappel,Carla H. van Gils
出处
期刊:Radiology [Radiological Society of North America]
卷期号:301 (2): 283-292 被引量:13
标识
DOI:10.1148/radiol.2021210325
摘要

Background High breast density increases breast cancer risk and lowers mammographic sensitivity. Supplemental MRI screening improves cancer detection but increases the number of false-positive screenings. Thus, methods to distinguish true-positive MRI screening results from false-positive ones are needed. Purpose To build prediction models based on clinical characteristics and MRI findings to reduce the rate of false-positive screening MRI findings in women with extremely dense breasts. Materials and Methods Clinical characteristics and MRI findings in Dutch breast cancer screening participants (age range, 50-75 years) with positive first-round MRI screening results (Breast Imaging Reporting and Data System 3, 4, or 5) after a normal screening mammography with extremely dense breasts (Volpara density category 4) were prospectively collected within the randomized controlled Dense Tissue and Early Breast Neoplasm Screening (DENSE) trial from December 2011 through November 2015. In this secondary analysis, prediction models were built using multivariable logistic regression analysis to distinguish true-positive MRI screening findings from false-positive ones. Results Among 454 women (median age, 52 years; interquartile range, 50-57 years) with a positive MRI result in a first supplemental MRI screening round, 79 were diagnosed with breast cancer (true-positive findings), and 375 had false-positive MRI results. The full prediction model (area under the receiver operating characteristics curve [AUC], 0.88; 95% CI: 0.84, 0.92), based on all collected clinical characteristics and MRI findings, could have prevented 45.5% (95% CI: 39.6, 51.5) of false-positive recalls and 21.3% (95% CI: 15.7, 28.3) of benign biopsies without missing any cancers. The model solely based on readily available MRI findings and age had a comparable performance (AUC, 0.84; 95% CI: 0.79, 0.88; P = .15) and could have prevented 35.5% (95% CI: 30.4, 41.1) of false-positive MRI screening results and 13.0% (95% CI: 8.8, 18.6) of benign biopsies. Conclusion Prediction models based on clinical characteristics and MRI findings may be useful to reduce the false-positive first-round screening MRI rate and benign biopsy rate in women with extremely dense breasts. Clinical trial registration no. NCT01315015 © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Imbriaco in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala发布了新的文献求助10
刚刚
cc完成签到,获得积分20
1秒前
1秒前
1秒前
weirdo发布了新的文献求助10
2秒前
FashionBoy应助ran采纳,获得10
3秒前
南国发布了新的文献求助10
3秒前
从容的巧曼完成签到 ,获得积分10
3秒前
无为应助Chloe采纳,获得10
4秒前
酷波er应助夏蓉采纳,获得10
6秒前
传奇3应助高夜云采纳,获得30
7秒前
7秒前
liuwenjie发布了新的文献求助10
8秒前
9秒前
10秒前
上官若男应助1111采纳,获得10
10秒前
12秒前
江风海韵完成签到,获得积分10
12秒前
liuzengzhang666完成签到,获得积分10
12秒前
果子关注了科研通微信公众号
12秒前
13秒前
cwb发布了新的文献求助10
13秒前
科研通AI2S应助全鑫采纳,获得10
14秒前
。。完成签到,获得积分10
14秒前
善学以致用应助谷雨采纳,获得10
14秒前
15秒前
李健应助路飞采纳,获得10
16秒前
16秒前
852应助ran采纳,获得10
16秒前
111发布了新的文献求助20
16秒前
17秒前
17秒前
77发布了新的文献求助10
18秒前
wsh发布了新的文献求助10
18秒前
18秒前
bkagyin应助严晓博采纳,获得10
19秒前
19秒前
19秒前
19秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555076
求助须知:如何正确求助?哪些是违规求助? 3130818
关于积分的说明 9388790
捐赠科研通 2830291
什么是DOI,文献DOI怎么找? 1555914
邀请新用户注册赠送积分活动 726331
科研通“疑难数据库(出版商)”最低求助积分说明 715716