亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DTL-DephosSite: Deep Transfer Learning Based Approach to Predict Dephosphorylation Sites

脱磷 磷酸丝氨酸 磷酸化 激酶 蛋白质磷酸化 磷酸酶 细胞生物学 生物 生物化学 蛋白质酪氨酸磷酸酶 计算生物学
作者
Meenal Chaudhari,Niraj Thapa,Hamid D. Ismail,Sandhya Chopade,Doina Caragea,Maja Köhn,Robert H. Newman,Dukka B. Kc
出处
期刊:Frontiers in Cell and Developmental Biology [Frontiers Media SA]
卷期号:9 被引量:11
标识
DOI:10.3389/fcell.2021.662983
摘要

Phosphorylation, which is mediated by protein kinases and opposed by protein phosphatases, is an important post-translational modification that regulates many cellular processes, including cellular metabolism, cell migration, and cell division. Due to its essential role in cellular physiology, a great deal of attention has been devoted to identifying sites of phosphorylation on cellular proteins and understanding how modification of these sites affects their cellular functions. This has led to the development of several computational methods designed to predict sites of phosphorylation based on a protein’s primary amino acid sequence. In contrast, much less attention has been paid to dephosphorylation and its role in regulating the phosphorylation status of proteins inside cells. Indeed, to date, dephosphorylation site prediction tools have been restricted to a few tyrosine phosphatases. To fill this knowledge gap, we have employed a transfer learning strategy to develop a deep learning-based model to predict sites that are likely to be dephosphorylated. Based on independent test results, our model, which we termed DTL-DephosSite, achieved efficiency scores for phosphoserine/phosphothreonine residues of 84%, 84% and 0.68 with respect to sensitivity (SN), specificity (SP) and Matthew’s correlation coefficient (MCC). Similarly, DTL-DephosSite exhibited efficiency scores of 75%, 88% and 0.64 for phosphotyrosine residues with respect to SN, SP, and MCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sxl完成签到 ,获得积分10
4秒前
铁光完成签到,获得积分10
18秒前
小陈发布了新的文献求助10
25秒前
万能图书馆应助小宇采纳,获得10
26秒前
哩哩哩完成签到,获得积分10
48秒前
甲烷完成签到,获得积分10
58秒前
天天快乐应助小陈采纳,获得10
58秒前
Liuruijia完成签到 ,获得积分10
1分钟前
小陈完成签到,获得积分10
1分钟前
充电宝应助afengya采纳,获得10
1分钟前
希望天下0贩的0应助zhang采纳,获得10
1分钟前
Jasper应助面包战士采纳,获得10
1分钟前
1分钟前
1分钟前
afengya发布了新的文献求助10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
1分钟前
子訡完成签到 ,获得积分10
1分钟前
面包战士发布了新的文献求助10
1分钟前
Lucas应助面包战士采纳,获得10
2分钟前
你好完成签到 ,获得积分10
2分钟前
2分钟前
尘默发布了新的文献求助10
2分钟前
2分钟前
Owen应助小鑫采纳,获得10
2分钟前
2分钟前
zhang发布了新的文献求助10
2分钟前
Jason完成签到 ,获得积分10
2分钟前
2分钟前
123发布了新的文献求助10
2分钟前
小鑫发布了新的文献求助10
2分钟前
gcy发布了新的文献求助10
2分钟前
小蘑菇应助Leo采纳,获得10
2分钟前
kuaijack完成签到,获得积分10
3分钟前
3分钟前
小赖想睡觉完成签到,获得积分10
3分钟前
思源应助尘默采纳,获得10
3分钟前
3分钟前
3分钟前
Leo发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875756
求助须知:如何正确求助?哪些是违规求助? 6520795
关于积分的说明 15677607
捐赠科研通 4993843
什么是DOI,文献DOI怎么找? 2691645
邀请新用户注册赠送积分活动 1633853
关于科研通互助平台的介绍 1591507