Neuromuscular disorders detection through time-frequency analysis and classification of multi-muscular EMG signals using Hilbert-Huang transform

希尔伯特-黄变换 模式识别(心理学) 人工智能 线性判别分析 计算机科学 时频分析 希尔伯特变换 特征选择 语音识别 参数统计 支持向量机 信号(编程语言) 小波变换 小波 数学 统计 光谱密度 白噪声 计算机视觉 滤波器(信号处理) 电信 程序设计语言
作者
Jonathan R. Torres-Castillo,Carlos Omar López‐López,M. Castañeda
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:71: 103037-103037 被引量:40
标识
DOI:10.1016/j.bspc.2021.103037
摘要

Electromyographic (EMG) signal analysis plays a vital role in diagnosing neuromuscular disorders (NMD). It is based on the clinician’s experience in interpreting the signal’s shape and acoustic properties. For accurate detection of these disorders, developing new techniques to analyze these signals comprehensively has increased. This paper presents a machine learning strategy (ML) to classify EMG signals to automatically detecting the presence of neuropathy, myopathy, or absence of disease efficiently. A database of 938 signals acquired from different muscles divided symmetrically into these three classes was used. The method decomposes each signal into amplitude or frequency modulated sub-bands and extracts from them time-frequency features using the Hilbert Transform. Non-parametric statistical analysis and Uncorrelated Linear Discriminant Analysis (ULDA) were used for feature selection and data’s dimensionality reduction. Three different techniques of ML were used in the classification; LDA, TREE, and KNN. Five decomposition methods were evaluated: empirical mode decomposition (EMD), ensemble EMD (EEMD), complementary EEMD (CEEMD), empirical wavelet transform (EWT), and variational mode decomposition (VMD). The best results were achieved by using EEMD with the KNN with an accuracy of 99.5%. A sensitivity of 99.6% to the neuropathic and 98.8% for myopathic. A specificity of 99.2% and a positive predictive value of 99.6%. This study has the highest classification performance with such variability and extensive data, outperforming the state-of-the-art neuromuscular disorders classification. Consequently, the proposed methodology adequately interprets the information extracted from the quantitative time-frequency analysis, showing its validity to support the clinician in detecting and diagnosing NMD highly efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暖暖圆圆完成签到,获得积分10
1秒前
han123123发布了新的文献求助10
1秒前
欢呼的丁真完成签到,获得积分10
3秒前
4秒前
Neonoes完成签到 ,获得积分10
5秒前
zahlkorper完成签到,获得积分20
6秒前
7秒前
hsp完成签到,获得积分10
8秒前
wuyany33完成签到,获得积分10
10秒前
贾慧莲发布了新的文献求助10
10秒前
hsp发布了新的文献求助30
11秒前
6wt完成签到,获得积分10
12秒前
郑传伟完成签到 ,获得积分10
13秒前
DZM发布了新的文献求助10
14秒前
开心向真完成签到 ,获得积分10
14秒前
14秒前
15秒前
早睡早起完成签到,获得积分10
16秒前
17秒前
changyouhuang完成签到,获得积分10
17秒前
兜兜应助Upupgrowth采纳,获得10
17秒前
漠雨寒灯完成签到 ,获得积分10
17秒前
mihhhhh完成签到,获得积分10
18秒前
18秒前
弹剑作歌完成签到,获得积分10
19秒前
霍允发布了新的文献求助10
19秒前
19秒前
酸奶七完成签到,获得积分10
20秒前
陶佳仪完成签到,获得积分10
21秒前
江姜完成签到 ,获得积分10
21秒前
25上岸完成签到,获得积分10
21秒前
包容的鸽子完成签到,获得积分20
22秒前
孟小云完成签到,获得积分10
22秒前
852应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
Jasper应助科研通管家采纳,获得10
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
wanci应助科研通管家采纳,获得10
23秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5224818
求助须知:如何正确求助?哪些是违规求助? 4396749
关于积分的说明 13684880
捐赠科研通 4261194
什么是DOI,文献DOI怎么找? 2338338
邀请新用户注册赠送积分活动 1335711
关于科研通互助平台的介绍 1291564