Neuromuscular disorders detection through time-frequency analysis and classification of multi-muscular EMG signals using Hilbert-Huang transform

希尔伯特-黄变换 模式识别(心理学) 人工智能 线性判别分析 计算机科学 时频分析 希尔伯特变换 特征选择 语音识别 参数统计 支持向量机 信号(编程语言) 小波变换 小波 数学 统计 光谱密度 白噪声 计算机视觉 滤波器(信号处理) 电信 程序设计语言
作者
Jonathan R. Torres-Castillo,Carlos Omar López‐López,M. Castañeda
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:71: 103037-103037 被引量:40
标识
DOI:10.1016/j.bspc.2021.103037
摘要

Electromyographic (EMG) signal analysis plays a vital role in diagnosing neuromuscular disorders (NMD). It is based on the clinician’s experience in interpreting the signal’s shape and acoustic properties. For accurate detection of these disorders, developing new techniques to analyze these signals comprehensively has increased. This paper presents a machine learning strategy (ML) to classify EMG signals to automatically detecting the presence of neuropathy, myopathy, or absence of disease efficiently. A database of 938 signals acquired from different muscles divided symmetrically into these three classes was used. The method decomposes each signal into amplitude or frequency modulated sub-bands and extracts from them time-frequency features using the Hilbert Transform. Non-parametric statistical analysis and Uncorrelated Linear Discriminant Analysis (ULDA) were used for feature selection and data’s dimensionality reduction. Three different techniques of ML were used in the classification; LDA, TREE, and KNN. Five decomposition methods were evaluated: empirical mode decomposition (EMD), ensemble EMD (EEMD), complementary EEMD (CEEMD), empirical wavelet transform (EWT), and variational mode decomposition (VMD). The best results were achieved by using EEMD with the KNN with an accuracy of 99.5%. A sensitivity of 99.6% to the neuropathic and 98.8% for myopathic. A specificity of 99.2% and a positive predictive value of 99.6%. This study has the highest classification performance with such variability and extensive data, outperforming the state-of-the-art neuromuscular disorders classification. Consequently, the proposed methodology adequately interprets the information extracted from the quantitative time-frequency analysis, showing its validity to support the clinician in detecting and diagnosing NMD highly efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
gapper完成签到 ,获得积分10
2秒前
3秒前
4秒前
Sean发布了新的文献求助10
5秒前
Jasper应助明亮的颖采纳,获得30
5秒前
望仔完成签到,获得积分10
5秒前
Ann完成签到,获得积分10
5秒前
6秒前
殷勤的紫槐应助wipmzxu采纳,获得200
6秒前
LIU完成签到 ,获得积分10
8秒前
myc发布了新的文献求助10
9秒前
9秒前
9秒前
泠漓完成签到 ,获得积分10
10秒前
王尧完成签到,获得积分10
11秒前
可靠半青完成签到 ,获得积分10
12秒前
科研通AI6应助tejing1158采纳,获得10
12秒前
13秒前
jia完成签到 ,获得积分10
13秒前
明亮的颖发布了新的文献求助30
14秒前
rslysywd完成签到,获得积分10
14秒前
14秒前
现代的bb完成签到,获得积分10
16秒前
xu1227发布了新的文献求助10
17秒前
大锤完成签到,获得积分20
17秒前
zz发布了新的文献求助10
19秒前
DXB完成签到 ,获得积分10
19秒前
小蘑菇应助明亮的颖采纳,获得10
20秒前
jx314发布了新的文献求助10
21秒前
22秒前
伶俐的铁身完成签到,获得积分10
22秒前
aub发布了新的文献求助10
22秒前
情怀应助王贺帅采纳,获得10
23秒前
唠叨的元槐完成签到,获得积分10
24秒前
vv1223完成签到,获得积分10
24秒前
25秒前
王思聪完成签到 ,获得积分10
26秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379532
求助须知:如何正确求助?哪些是违规求助? 4503848
关于积分的说明 14016757
捐赠科研通 4412672
什么是DOI,文献DOI怎么找? 2423885
邀请新用户注册赠送积分活动 1416773
关于科研通互助平台的介绍 1394345