Neuromuscular disorders detection through time-frequency analysis and classification of multi-muscular EMG signals using Hilbert-Huang transform

希尔伯特-黄变换 模式识别(心理学) 人工智能 线性判别分析 计算机科学 时频分析 希尔伯特变换 特征选择 语音识别 参数统计 支持向量机 信号(编程语言) 小波变换 小波 数学 统计 光谱密度 白噪声 计算机视觉 滤波器(信号处理) 电信 程序设计语言
作者
Jonathan R. Torres-Castillo,Carlos Omar López‐López,M. Castañeda
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:71: 103037-103037 被引量:40
标识
DOI:10.1016/j.bspc.2021.103037
摘要

Electromyographic (EMG) signal analysis plays a vital role in diagnosing neuromuscular disorders (NMD). It is based on the clinician’s experience in interpreting the signal’s shape and acoustic properties. For accurate detection of these disorders, developing new techniques to analyze these signals comprehensively has increased. This paper presents a machine learning strategy (ML) to classify EMG signals to automatically detecting the presence of neuropathy, myopathy, or absence of disease efficiently. A database of 938 signals acquired from different muscles divided symmetrically into these three classes was used. The method decomposes each signal into amplitude or frequency modulated sub-bands and extracts from them time-frequency features using the Hilbert Transform. Non-parametric statistical analysis and Uncorrelated Linear Discriminant Analysis (ULDA) were used for feature selection and data’s dimensionality reduction. Three different techniques of ML were used in the classification; LDA, TREE, and KNN. Five decomposition methods were evaluated: empirical mode decomposition (EMD), ensemble EMD (EEMD), complementary EEMD (CEEMD), empirical wavelet transform (EWT), and variational mode decomposition (VMD). The best results were achieved by using EEMD with the KNN with an accuracy of 99.5%. A sensitivity of 99.6% to the neuropathic and 98.8% for myopathic. A specificity of 99.2% and a positive predictive value of 99.6%. This study has the highest classification performance with such variability and extensive data, outperforming the state-of-the-art neuromuscular disorders classification. Consequently, the proposed methodology adequately interprets the information extracted from the quantitative time-frequency analysis, showing its validity to support the clinician in detecting and diagnosing NMD highly efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性的振家完成签到,获得积分10
刚刚
刚刚
paopao完成签到,获得积分10
1秒前
1秒前
傅夜山发布了新的文献求助10
2秒前
单于访枫完成签到,获得积分10
2秒前
弥生发布了新的文献求助10
3秒前
hahada发布了新的文献求助200
3秒前
爱静静应助puzhongjiMiQ采纳,获得10
3秒前
3秒前
爱静静应助puzhongjiMiQ采纳,获得10
4秒前
科研通AI2S应助puzhongjiMiQ采纳,获得10
4秒前
不配.应助puzhongjiMiQ采纳,获得10
4秒前
孤檠应助puzhongjiMiQ采纳,获得10
4秒前
哔哔应助puzhongjiMiQ采纳,获得10
4秒前
科研通AI2S应助puzhongjiMiQ采纳,获得10
4秒前
慕青应助puzhongjiMiQ采纳,获得30
4秒前
duoduo应助puzhongjiMiQ采纳,获得10
4秒前
5秒前
阳光傲菡完成签到 ,获得积分10
5秒前
月月发布了新的文献求助10
6秒前
别抢我的虾滑完成签到,获得积分10
6秒前
Ldq完成签到 ,获得积分10
7秒前
7秒前
幽一完成签到,获得积分10
8秒前
8秒前
ao20000106完成签到,获得积分10
9秒前
9秒前
十三完成签到 ,获得积分10
10秒前
williamlouis完成签到,获得积分10
10秒前
kiki完成签到 ,获得积分10
10秒前
乐观悟空发布了新的文献求助10
11秒前
信仰xy应助周涛采纳,获得30
11秒前
木木完成签到,获得积分10
11秒前
冯哒哒完成签到 ,获得积分10
12秒前
夏沫完成签到,获得积分10
12秒前
好事成双完成签到,获得积分10
12秒前
ao20000106发布了新的文献求助10
12秒前
老火完成签到,获得积分10
12秒前
俭朴钢铁侠完成签到 ,获得积分10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150787
求助须知:如何正确求助?哪些是违规求助? 2802284
关于积分的说明 7847147
捐赠科研通 2459632
什么是DOI,文献DOI怎么找? 1309322
科研通“疑难数据库(出版商)”最低求助积分说明 628884
版权声明 601757