亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Neuromuscular disorders detection through time-frequency analysis and classification of multi-muscular EMG signals using Hilbert-Huang transform

希尔伯特-黄变换 模式识别(心理学) 人工智能 线性判别分析 计算机科学 时频分析 希尔伯特变换 特征选择 语音识别 参数统计 支持向量机 信号(编程语言) 小波变换 小波 数学 统计 光谱密度 白噪声 计算机视觉 滤波器(信号处理) 电信 程序设计语言
作者
Jonathan R. Torres-Castillo,Carlos Omar López‐López,M. Castañeda
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:71: 103037-103037 被引量:40
标识
DOI:10.1016/j.bspc.2021.103037
摘要

Electromyographic (EMG) signal analysis plays a vital role in diagnosing neuromuscular disorders (NMD). It is based on the clinician’s experience in interpreting the signal’s shape and acoustic properties. For accurate detection of these disorders, developing new techniques to analyze these signals comprehensively has increased. This paper presents a machine learning strategy (ML) to classify EMG signals to automatically detecting the presence of neuropathy, myopathy, or absence of disease efficiently. A database of 938 signals acquired from different muscles divided symmetrically into these three classes was used. The method decomposes each signal into amplitude or frequency modulated sub-bands and extracts from them time-frequency features using the Hilbert Transform. Non-parametric statistical analysis and Uncorrelated Linear Discriminant Analysis (ULDA) were used for feature selection and data’s dimensionality reduction. Three different techniques of ML were used in the classification; LDA, TREE, and KNN. Five decomposition methods were evaluated: empirical mode decomposition (EMD), ensemble EMD (EEMD), complementary EEMD (CEEMD), empirical wavelet transform (EWT), and variational mode decomposition (VMD). The best results were achieved by using EEMD with the KNN with an accuracy of 99.5%. A sensitivity of 99.6% to the neuropathic and 98.8% for myopathic. A specificity of 99.2% and a positive predictive value of 99.6%. This study has the highest classification performance with such variability and extensive data, outperforming the state-of-the-art neuromuscular disorders classification. Consequently, the proposed methodology adequately interprets the information extracted from the quantitative time-frequency analysis, showing its validity to support the clinician in detecting and diagnosing NMD highly efficiently.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
好了没了完成签到,获得积分10
2秒前
挚智完成签到 ,获得积分10
4秒前
4秒前
好了没了发布了新的文献求助10
5秒前
lele完成签到,获得积分10
5秒前
迷路世立完成签到,获得积分10
6秒前
8秒前
FashionBoy应助vinss66home采纳,获得10
9秒前
嗯嗯嗯嗯嗯完成签到 ,获得积分10
10秒前
遇晚完成签到,获得积分10
17秒前
肥牛完成签到,获得积分10
18秒前
21秒前
解你所忧完成签到 ,获得积分10
22秒前
SciGPT应助浅呀呀呀采纳,获得10
24秒前
ZepHyR发布了新的文献求助10
26秒前
30秒前
李义志发布了新的文献求助10
36秒前
魁梧的衫完成签到 ,获得积分10
36秒前
37秒前
39秒前
LingC完成签到,获得积分10
39秒前
41秒前
44秒前
浅呀呀呀发布了新的文献求助10
44秒前
XueXiTong完成签到,获得积分10
46秒前
Swear完成签到 ,获得积分10
47秒前
49秒前
852应助lzq采纳,获得10
50秒前
雪生在无人荒野完成签到,获得积分10
50秒前
doctor_quyi完成签到,获得积分10
50秒前
52秒前
爆米花应助xinxin采纳,获得10
52秒前
gjn发布了新的文献求助10
55秒前
55秒前
57秒前
57秒前
57秒前
vinss66home发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639422
求助须知:如何正确求助?哪些是违规求助? 4748203
关于积分的说明 15006376
捐赠科研通 4797589
什么是DOI,文献DOI怎么找? 2563600
邀请新用户注册赠送积分活动 1522598
关于科研通互助平台的介绍 1482264