亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Neuromuscular disorders detection through time-frequency analysis and classification of multi-muscular EMG signals using Hilbert-Huang transform

希尔伯特-黄变换 模式识别(心理学) 人工智能 线性判别分析 计算机科学 时频分析 希尔伯特变换 特征选择 语音识别 参数统计 支持向量机 信号(编程语言) 小波变换 小波 数学 统计 光谱密度 白噪声 计算机视觉 电信 滤波器(信号处理) 程序设计语言
作者
Jonathan R. Torres-Castillo,Carlos Omar López‐López,M. Castañeda
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:71: 103037-103037 被引量:40
标识
DOI:10.1016/j.bspc.2021.103037
摘要

Electromyographic (EMG) signal analysis plays a vital role in diagnosing neuromuscular disorders (NMD). It is based on the clinician’s experience in interpreting the signal’s shape and acoustic properties. For accurate detection of these disorders, developing new techniques to analyze these signals comprehensively has increased. This paper presents a machine learning strategy (ML) to classify EMG signals to automatically detecting the presence of neuropathy, myopathy, or absence of disease efficiently. A database of 938 signals acquired from different muscles divided symmetrically into these three classes was used. The method decomposes each signal into amplitude or frequency modulated sub-bands and extracts from them time-frequency features using the Hilbert Transform. Non-parametric statistical analysis and Uncorrelated Linear Discriminant Analysis (ULDA) were used for feature selection and data’s dimensionality reduction. Three different techniques of ML were used in the classification; LDA, TREE, and KNN. Five decomposition methods were evaluated: empirical mode decomposition (EMD), ensemble EMD (EEMD), complementary EEMD (CEEMD), empirical wavelet transform (EWT), and variational mode decomposition (VMD). The best results were achieved by using EEMD with the KNN with an accuracy of 99.5%. A sensitivity of 99.6% to the neuropathic and 98.8% for myopathic. A specificity of 99.2% and a positive predictive value of 99.6%. This study has the highest classification performance with such variability and extensive data, outperforming the state-of-the-art neuromuscular disorders classification. Consequently, the proposed methodology adequately interprets the information extracted from the quantitative time-frequency analysis, showing its validity to support the clinician in detecting and diagnosing NMD highly efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
勤恳依霜完成签到,获得积分10
15秒前
勤恳依霜发布了新的文献求助10
20秒前
Sue完成签到 ,获得积分10
26秒前
32秒前
37秒前
研友_LBRPOL发布了新的文献求助10
41秒前
量子星尘发布了新的文献求助10
45秒前
研友_LBRPOL完成签到,获得积分10
51秒前
量子星尘发布了新的文献求助10
2分钟前
红橙黄绿蓝靛紫111完成签到,获得积分10
2分钟前
2分钟前
herococa应助科研通管家采纳,获得10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
哭泣猫咪发布了新的文献求助10
5分钟前
5分钟前
5分钟前
YifanWang应助开心的瘦子采纳,获得30
5分钟前
6分钟前
内向绿凝发布了新的文献求助10
6分钟前
6分钟前
水牛发布了新的文献求助10
6分钟前
科研通AI2S应助andrele采纳,获得10
6分钟前
herococa应助科研通管家采纳,获得10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
研友_Z33XvZ发布了新的文献求助10
6分钟前
wildcat_miao关注了科研通微信公众号
6分钟前
wildcat_miao发布了新的文献求助10
7分钟前
哭泣猫咪完成签到,获得积分10
7分钟前
内向绿凝完成签到,获得积分10
7分钟前
zlz完成签到,获得积分10
7分钟前
小白菜完成签到,获得积分10
7分钟前
所所应助隋缘采纳,获得10
7分钟前
8分钟前
隋缘发布了新的文献求助10
8分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953462
求助须知:如何正确求助?哪些是违规求助? 3498943
关于积分的说明 11093353
捐赠科研通 3229519
什么是DOI,文献DOI怎么找? 1785471
邀请新用户注册赠送积分活动 869430
科研通“疑难数据库(出版商)”最低求助积分说明 801442