亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning in natural and engineered water systems

水质 计算机科学 水资源 追踪 生化工程 可靠性(半导体) 地下水 环境科学 工程类 生态学 量子力学 生物 操作系统 物理 功率(物理) 岩土工程
作者
Ruixing Huang,Chengxue Ma,Jun Ma,Xiaoliu Huangfu,Qiang He
出处
期刊:Water Research [Elsevier]
卷期号:205: 117666-117666 被引量:165
标识
DOI:10.1016/j.watres.2021.117666
摘要

Water resources of desired quality and quantity are the foundation for human survival and sustainable development. To better protect the water environment and conserve water resources, efficient water management, purification, and transportation are of critical importance. In recent years, machine learning (ML) has exhibited its practicability, reliability, and high efficiency in numerous applications; furthermore, it has solved conventional and emerging problems in both natural and engineered water systems. For example, ML can predict various water quality indicators in situ and real-time by considering the complex interactions among water-related variables. ML approaches can also solve emerging pollution problems with proven rules or universal mechanisms summarized from the related research. Moreover, by applying image recognition technology to analyze the relationships between image information and physicochemical properties of the research object, ML can effectively identify and characterize specific contaminants. In view of the bright prospects of ML, this review comprehensively summarizes the development of ML applications in natural and engineered water systems. First, the concept and modeling steps of ML are briefly introduced, including data preparation, algorithm selection and model evaluation. In addition, comprehensive applications of ML in recent studies, including predicting water quality, mapping groundwater contaminants, classifying water resources, tracing contaminant sources, and evaluating pollutant toxicity in natural water systems, as well as modeling treatment techniques, assisting characterization analysis, purifying and distributing drinking water, and collecting and treating sewage water in engineered water systems, are summarized. Finally, the advantages and disadvantages of commonly used algorithms are analyzed according to their structures and mechanisms, and recommendations on the selection of ML algorithms for different studies, as well as prospects on the application and development of ML in water science are proposed. This review provides references for solving a wider range of water-related problems and brings further insights into the intelligent development of water science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
阳光刺眼完成签到 ,获得积分10
25秒前
活力的妙之完成签到 ,获得积分10
44秒前
54秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
自强不息完成签到 ,获得积分10
1分钟前
1分钟前
所所应助标致的元柏采纳,获得10
1分钟前
yi一一完成签到,获得积分10
1分钟前
wanci应助ly采纳,获得10
2分钟前
2分钟前
ly完成签到,获得积分10
2分钟前
2分钟前
李小猫发布了新的文献求助10
2分钟前
ly发布了新的文献求助10
2分钟前
贾南烟发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
缥缈嫣发布了新的文献求助10
3分钟前
4分钟前
缥缈嫣完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
SKD完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
鹏程万里完成签到,获得积分10
5分钟前
5分钟前
爱静静应助夏老师采纳,获得30
5分钟前
5分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
6分钟前
大乐完成签到 ,获得积分10
7分钟前
7分钟前
Chunsong发布了新的文献求助10
7分钟前
SciGPT应助标致的元柏采纳,获得10
7分钟前
8分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311183
求助须知:如何正确求助?哪些是违规求助? 2943918
关于积分的说明 8516715
捐赠科研通 2619290
什么是DOI,文献DOI怎么找? 1432193
科研通“疑难数据库(出版商)”最低求助积分说明 664520
邀请新用户注册赠送积分活动 649810