作者
Ruixing Huang,Chengxue Ma,Jun Ma,Xiaoliu Huangfu,Qiang He
摘要
Water resources of desired quality and quantity are the foundation for human survival and sustainable development. To better protect the water environment and conserve water resources, efficient water management, purification, and transportation are of critical importance. In recent years, machine learning (ML) has exhibited its practicability, reliability, and high efficiency in numerous applications; furthermore, it has solved conventional and emerging problems in both natural and engineered water systems. For example, ML can predict various water quality indicators in situ and real-time by considering the complex interactions among water-related variables. ML approaches can also solve emerging pollution problems with proven rules or universal mechanisms summarized from the related research. Moreover, by applying image recognition technology to analyze the relationships between image information and physicochemical properties of the research object, ML can effectively identify and characterize specific contaminants. In view of the bright prospects of ML, this review comprehensively summarizes the development of ML applications in natural and engineered water systems. First, the concept and modeling steps of ML are briefly introduced, including data preparation, algorithm selection and model evaluation. In addition, comprehensive applications of ML in recent studies, including predicting water quality, mapping groundwater contaminants, classifying water resources, tracing contaminant sources, and evaluating pollutant toxicity in natural water systems, as well as modeling treatment techniques, assisting characterization analysis, purifying and distributing drinking water, and collecting and treating sewage water in engineered water systems, are summarized. Finally, the advantages and disadvantages of commonly used algorithms are analyzed according to their structures and mechanisms, and recommendations on the selection of ML algorithms for different studies, as well as prospects on the application and development of ML in water science are proposed. This review provides references for solving a wider range of water-related problems and brings further insights into the intelligent development of water science.