Development of a Whole-urine, Multiplexed, Next-generation RNA-sequencing Assay for Early Detection of Aggressive Prostate Cancer

前列腺癌 TMPRS2型 医学 PCA3系列 直肠检查 尿 生物标志物 前列腺 接收机工作特性 前列腺特异性抗原 Erg公司 肿瘤科 癌症 内科学 疾病 生物 眼科 遗传学 2019年冠状病毒病(COVID-19) 视网膜 传染病(医学专业)
作者
Andi K. Cani,Kevin Hu,Chia-Jen Liu,Javed Siddiqui,Yingye Zheng,Sumin Han,Srinivas Nallandhighal,Daniel H. Hovelson,Lanbo Xiao,T. M. Pham,Nicholas W. Eyrich,Heng Zheng,Randy Vince,Jeffrey J. Tosoian,Ganesh S. Palapattu,Todd M. Morgan,John T. Wei,Aaron M. Udager,Arul M. Chinnaiyan,Scott A. Tomlins,Simpa S. Salami
出处
期刊:European Urology Oncology [Elsevier BV]
卷期号:5 (4): 430-439 被引量:9
标识
DOI:10.1016/j.euo.2021.03.002
摘要

Despite biomarker development advances, early detection of aggressive prostate cancer (PCa) remains challenging. We previously developed a clinical-grade urine test (Michigan Prostate Score [MiPS]) for individualized aggressive PCa risk prediction. MiPS combines serum prostate-specific antigen (PSA), the TMPRSS2:ERG (T2:ERG) gene fusion, and PCA3 lncRNA in whole urine after digital rectal examination (DRE).To improve on MiPS with a novel next-generation sequencing (NGS) multibiomarker urine assay for early detection of aggressive PCa.Preclinical development and validation of a post-DRE urine RNA NGS assay (Urine Prostate Seq [UPSeq]) assessing 84 PCa transcriptomic biomarkers, including T2:ERG, PCA3, additional PCa fusions/isoforms, mRNAs, lncRNAs, and expressed mutations. Our UPSeq model was trained on 73 patients and validated on a held-out set of 36 patients representing the spectrum of disease (benign to grade group [GG] 5 PCa).The area under the receiver operating characteristic curve (AUC) of UPSeq was compared with PSA, MiPS, and other existing models/biomarkers for predicting GG ≥3 PCa.UPSeq demonstrated high analytical accuracy and concordance with MiPS, and was able to detect expressed germline HOXB13 and somatic SPOP mutations. In an extreme design cohort (n = 109; benign/GG 1 vs GG ≥3 PCa, stratified to exclude GG 2 cancer in order to capture signal difference between extreme ends of disease), UPSeq showed differential expression for T2:ERG.T1E4 (1.2 vs 78.8 median normalized reads, p < 0.00001) and PCA3 (1024 vs 2521, p = 0.02), additional T2:ERG splice isoforms, and other candidate biomarkers. Using machine learning, we developed a 15-transcript model on the training set (n = 73) that outperformed serum PSA and sequencing-derived MiPS in predicting GG ≥3 PCa in the held-out validation set (n = 36; AUC 0.82 vs 0.69 and 0.69, respectively).These results support the potential utility of our novel urine-based RNA NGS assay to supplement PSA for improved early detection of aggressive PCa.We have developed a new urine-based test for the detection of aggressive prostate cancer, which promises improvement upon current biomarker tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛙趣完成签到,获得积分10
刚刚
刚刚
果果完成签到,获得积分10
刚刚
yanwowo完成签到,获得积分10
刚刚
1秒前
星星完成签到,获得积分10
1秒前
1秒前
laojian完成签到 ,获得积分10
1秒前
李健应助深情傲柔采纳,获得10
2秒前
栓Q发布了新的文献求助10
2秒前
2秒前
CT民工发布了新的文献求助10
2秒前
mslln发布了新的文献求助10
2秒前
科研完成签到,获得积分20
3秒前
4秒前
PGZ完成签到,获得积分10
4秒前
醒醒完成签到,获得积分10
4秒前
赘婿应助ing采纳,获得10
5秒前
zhou完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
周晓发布了新的文献求助10
6秒前
beyond完成签到,获得积分10
7秒前
7秒前
做饭不咸完成签到,获得积分10
8秒前
无极微光应助木光采纳,获得20
8秒前
9秒前
www发布了新的文献求助10
9秒前
万能图书馆应助yanwowo采纳,获得10
9秒前
黄嘉慧完成签到 ,获得积分10
10秒前
想发一篇贾克斯完成签到,获得积分10
10秒前
11秒前
F_ken发布了新的文献求助10
11秒前
块块的加隆满口袋完成签到 ,获得积分10
12秒前
CT民工发布了新的文献求助10
12秒前
受伤冰菱完成签到,获得积分10
13秒前
lingyu完成签到,获得积分10
13秒前
14秒前
南絮发布了新的文献求助10
14秒前
ccc完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978