Model-Based Multiobjective Optimization Methods for Efficient Management of Subsurface Flow

数学优化 多目标优化 粒子群优化 计算机科学 人口 趋同(经济学) 排名(信息检索) 比例(比率) 最优化问题 帕累托原理 数学 人工智能 物理 人口学 量子力学 社会学 经济 经济增长
作者
Jianlin Fu,Xian‐Huan Wen
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:22 (06): 1984-1998 被引量:39
标识
DOI:10.2118/182598-pa
摘要

Summary Multiobjective optimization (MOO), which accounts for several distinct, possibly conflicting, objectives, is expected to be capable of providing improved reservoir-management (RM) solutions for efficient oilfield development because of the overall optimization of subsurface flow. Considering the complexity and diversity of MOO problems in model-based RM, we develop three MOO methods—MOAdjoint, MOGA, and MOPSO—in this work to address various oilfield-development problems. MOAdjoint combines a weighted-sum technique with a gradient-based method for solving large-scale continuous problems that have thousands of variables. An adjoint method is used to efficiently compute the derivatives of objective functions with respect to decision variables, and a sequential quadratic-programming method is used for optimization search. MOGA is a population-based method, which combines a Pareto-ranking technique with genetic algorithm (GA) to address small-scale (discrete) problems. MOPSO is another population-based method, which combines a Pareto technique with particle-swarm optimization (PSO) for a wide spectrum of optimization problems. Their advantages and disadvantages are highlighted. To take advantage of the strengths and overcome the drawbacks of these methods, a multiscale hybrid strategy is further formulated for solving complex, large-scale optimization problems by combining these methods at various scales. An example is used to compare these methods. Results show that all three methods can yield improved solutions. MOPSO seems particularly suitable for medium-scale RM problems, mainly because of its relatively fast convergence speed and efficient recovery of the Pareto front. With a proper initial guess and a set of effective weight coefficients, MOAdjoint can most efficiently solve large-scale continuous problems, particularly if model uncertainty is considered. The multiscale hybrid strategy is able to offer the best result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助正直凌文采纳,获得10
刚刚
恋雅颖月发布了新的文献求助10
2秒前
月月鸟完成签到 ,获得积分10
2秒前
2秒前
希望天下0贩的0应助咯咚采纳,获得10
2秒前
lqm完成签到,获得积分10
3秒前
minuxSCI完成签到,获得积分10
3秒前
orixero应助TAZIA采纳,获得10
4秒前
彭林完成签到 ,获得积分20
4秒前
5秒前
YY发布了新的文献求助10
6秒前
ZXK完成签到 ,获得积分10
7秒前
8秒前
奋斗向南完成签到,获得积分10
9秒前
Hello应助年轻的书本采纳,获得10
10秒前
李健的粉丝团团长应助YY采纳,获得10
12秒前
儒雅的雁山完成签到 ,获得积分10
14秒前
DrKorla完成签到,获得积分10
14秒前
捏个小雪团完成签到 ,获得积分10
16秒前
18秒前
21秒前
积极的帽子完成签到 ,获得积分10
23秒前
23秒前
23秒前
kingwill举报害羞的冷雪求助涉嫌违规
24秒前
咯咚发布了新的文献求助10
24秒前
YH应助科研通管家采纳,获得50
25秒前
CodeCraft应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
ED应助科研通管家采纳,获得10
25秒前
彭于晏应助科研通管家采纳,获得10
25秒前
25秒前
ED应助科研通管家采纳,获得10
25秒前
酷波er应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
25秒前
26秒前
29秒前
29秒前
hu完成签到 ,获得积分10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954414
求助须知:如何正确求助?哪些是违规求助? 3500373
关于积分的说明 11099295
捐赠科研通 3230866
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801689