Model-Based Multiobjective Optimization Methods for Efficient Management of Subsurface Flow

数学优化 多目标优化 粒子群优化 计算机科学 人口 趋同(经济学) 排名(信息检索) 比例(比率) 最优化问题 帕累托原理 数学 人工智能 量子力学 物理 经济增长 社会学 人口学 经济
作者
Jianlin Fu,Xian‐Huan Wen
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:22 (06): 1984-1998 被引量:39
标识
DOI:10.2118/182598-pa
摘要

Summary Multiobjective optimization (MOO), which accounts for several distinct, possibly conflicting, objectives, is expected to be capable of providing improved reservoir-management (RM) solutions for efficient oilfield development because of the overall optimization of subsurface flow. Considering the complexity and diversity of MOO problems in model-based RM, we develop three MOO methods—MOAdjoint, MOGA, and MOPSO—in this work to address various oilfield-development problems. MOAdjoint combines a weighted-sum technique with a gradient-based method for solving large-scale continuous problems that have thousands of variables. An adjoint method is used to efficiently compute the derivatives of objective functions with respect to decision variables, and a sequential quadratic-programming method is used for optimization search. MOGA is a population-based method, which combines a Pareto-ranking technique with genetic algorithm (GA) to address small-scale (discrete) problems. MOPSO is another population-based method, which combines a Pareto technique with particle-swarm optimization (PSO) for a wide spectrum of optimization problems. Their advantages and disadvantages are highlighted. To take advantage of the strengths and overcome the drawbacks of these methods, a multiscale hybrid strategy is further formulated for solving complex, large-scale optimization problems by combining these methods at various scales. An example is used to compare these methods. Results show that all three methods can yield improved solutions. MOPSO seems particularly suitable for medium-scale RM problems, mainly because of its relatively fast convergence speed and efficient recovery of the Pareto front. With a proper initial guess and a set of effective weight coefficients, MOAdjoint can most efficiently solve large-scale continuous problems, particularly if model uncertainty is considered. The multiscale hybrid strategy is able to offer the best result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
swallow发布了新的文献求助10
1秒前
共享精神应助迷路的初柔采纳,获得10
1秒前
1秒前
戴维发布了新的文献求助10
1秒前
YYL完成签到,获得积分10
2秒前
hsss驳回了英姑应助
3秒前
tjcu发布了新的文献求助30
4秒前
7秒前
Iridescent完成签到 ,获得积分10
7秒前
西园寺鹿旎应助tjcu采纳,获得30
8秒前
8秒前
9秒前
twistzz完成签到 ,获得积分10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
10秒前
迷路的初柔完成签到,获得积分10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
Zx_1993应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
11秒前
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
Zx_1993应助科研通管家采纳,获得10
11秒前
归尘应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
归尘应助科研通管家采纳,获得10
11秒前
allanqiao发布了新的文献求助10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
归尘应助科研通管家采纳,获得10
11秒前
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
归尘应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425117
求助须知:如何正确求助?哪些是违规求助? 4539252
关于积分的说明 14166344
捐赠科研通 4456403
什么是DOI,文献DOI怎么找? 2444186
邀请新用户注册赠送积分活动 1435189
关于科研通互助平台的介绍 1412553