Molecular Beam Epitaxy of Highly Crystalline Monolayer Molybdenum Disulfide on Hexagonal Boron Nitride

单层 二硫化钼 分子束外延 外延 成核 化学 纳米技术 蓝宝石 拉曼光谱 氮化硼 光电子学 材料科学 光学 激光器 图层(电子) 复合材料 物理 有机化学
作者
Deyi Fu,Xiaoxu Zhao,Yuyang Zhang,Linjun Li,Hai Xu,A‐Rang Jang,Seong In Yoon,Peng Song,Sock Mui Poh,Tianhua Ren,Zijing Ding,Wei Fu,Tae Joo Shin,Hyeon Suk Shin,Sokrates T. Pantelides,Wu Zhou,Kian Ping Loh
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:139 (27): 9392-9400 被引量:192
标识
DOI:10.1021/jacs.7b05131
摘要

Atomically thin molybdenum disulfide (MoS2), a direct-band-gap semiconductor, is promising for applications in electronics and optoelectronics, but the scalable synthesis of highly crystalline film remains challenging. Here we report the successful epitaxial growth of a continuous, uniform, highly crystalline monolayer MoS2 film on hexagonal boron nitride (h-BN) by molecular beam epitaxy. Atomic force microscopy and electron microscopy studies reveal that MoS2 grown on h-BN primarily consists of two types of nucleation grains (0° aligned and 60° antialigned domains). By adopting a high growth temperature and ultralow precursor flux, the formation of 60° antialigned grains is largely suppressed. The resulting perfectly aligned grains merge seamlessly into a highly crystalline film. Large-scale monolayer MoS2 film can be grown on a 2 in. h-BN/sapphire wafer, for which surface morphology and Raman mapping confirm good spatial uniformity. Our study represents a significant step in the scalable synthesis of highly crystalline MoS2 films on atomically flat surfaces and paves the way to large-scale applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昰昱完成签到,获得积分10
1秒前
崽崽完成签到 ,获得积分10
2秒前
彭于晏应助daheeeee采纳,获得10
2秒前
研友_n0kjPL完成签到,获得积分0
3秒前
老四完成签到,获得积分10
3秒前
xx完成签到 ,获得积分10
5秒前
6秒前
111完成签到,获得积分10
7秒前
燕子完成签到,获得积分10
9秒前
瞿访云完成签到,获得积分10
9秒前
yt完成签到,获得积分10
10秒前
精明秋完成签到,获得积分10
11秒前
芽衣完成签到 ,获得积分10
12秒前
ang完成签到,获得积分10
12秒前
daheeeee发布了新的文献求助10
13秒前
14秒前
11完成签到,获得积分10
15秒前
lbx完成签到,获得积分10
16秒前
phoenix001完成签到,获得积分0
18秒前
神明发布了新的文献求助10
19秒前
CGBY完成签到 ,获得积分10
19秒前
Loooong完成签到,获得积分0
19秒前
甜甜醉波完成签到,获得积分10
19秒前
柳言完成签到 ,获得积分10
20秒前
乐乐乐发布了新的文献求助10
22秒前
23秒前
科研通AI2S应助Julia采纳,获得10
23秒前
24秒前
大胆胡萝卜完成签到,获得积分10
25秒前
Manyiu完成签到,获得积分20
26秒前
麦乐兴完成签到,获得积分10
26秒前
打铁佬完成签到,获得积分10
27秒前
稀松完成签到,获得积分10
27秒前
wipmzxu完成签到,获得积分10
27秒前
徐橙橙发布了新的文献求助10
30秒前
30秒前
宇宙的中心完成签到,获得积分10
30秒前
乐乐乐完成签到,获得积分10
31秒前
小草三心完成签到 ,获得积分10
31秒前
xzh完成签到,获得积分10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134060
求助须知:如何正确求助?哪些是违规求助? 2784861
关于积分的说明 7769049
捐赠科研通 2440325
什么是DOI,文献DOI怎么找? 1297361
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792