Single-Atomic Ruthenium Catalytic Sites on Nitrogen-Doped Graphene for Oxygen Reduction Reaction in Acidic Medium

石墨烯 催化作用 电催化剂 电化学 无机化学 材料科学 电化学能量转换 甲醇 氧化物 氮气 可逆氢电极 化学 电极 纳米技术 工作电极 物理化学 有机化学 冶金
作者
Chenhao Zhang,Junwei Sha,Huilong Fei,Mingjie Liu,Sadegh Yazdi,Jibo Zhang,Qifeng Zhong,Xiaolong Zou,Naiqin Zhao,Haisheng Yu,Zheng Jiang,Emilie Ringe,Boris I. Yakobson,Juncai Dong,Dongliang Chen,James M. Tour
出处
期刊:ACS Nano [American Chemical Society]
卷期号:11 (7): 6930-6941 被引量:518
标识
DOI:10.1021/acsnano.7b02148
摘要

The cathodic oxygen reduction reaction (ORR) is essential in the electrochemical energy conversion of fuel cells. Here, through the NH3 atmosphere annealing of a graphene oxide (GO) precursor containing trace amounts of Ru, we have synthesized atomically dispersed Ru on nitrogen-doped graphene that performs as an electrocatalyst for the ORR in acidic medium. The Ru/nitrogen-doped GO catalyst exhibits excellent four-electron ORR activity, offering onset and half-wave potentials of 0.89 and 0.75 V, respectively, vs a reversible hydrogen electrode (RHE) in 0.1 M HClO4, together with better durability and tolerance toward methanol and carbon monoxide poisoning than seen in commercial Pt/C catalysts. X-ray adsorption fine structure analysis and aberration-corrected high-angle annular dark-field scanning transmission electron microscopy are performed and indicate that the chemical structure of Ru is predominantly composed of isolated Ru atoms coordinated with nitrogen atoms on the graphene substrate. Furthermore, a density function theory study of the ORR mechanism suggests that a Ru-oxo-N4 structure appears to be responsible for the ORR catalytic activity in the acidic medium. These findings provide a route for the design of efficient ORR single-atom catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助杜色建风采纳,获得10
1秒前
十三应助loo采纳,获得10
1秒前
2秒前
3秒前
3秒前
青年才俊完成签到,获得积分10
3秒前
chen应助shiqi采纳,获得10
4秒前
MIRROR发布了新的文献求助10
4秒前
4秒前
大模型应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
JayceHe应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
rain应助科研通管家采纳,获得10
5秒前
yyzhou应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
yyzhou应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
ccm应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
清飏应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
科研通AI6应助承一采纳,获得10
5秒前
6秒前
千与完成签到 ,获得积分20
7秒前
lwy同学发布了新的文献求助10
9秒前
mucheng发布了新的文献求助10
9秒前
9秒前
甜蜜寄文发布了新的文献求助10
10秒前
lavender123完成签到,获得积分10
12秒前
13秒前
TRY完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642783
求助须知:如何正确求助?哪些是违规求助? 4759870
关于积分的说明 15018994
捐赠科研通 4801298
什么是DOI,文献DOI怎么找? 2566633
邀请新用户注册赠送积分活动 1524577
关于科研通互助平台的介绍 1484152