二次规划
数学
数学优化
二阶锥规划
正多边形
二次方程
活动集方法
集合(抽象数据类型)
二次约束二次规划
凸优化
比例(比率)
点(几何)
内点法
凸集
序列二次规划
非线性规划
计算机科学
几何学
物理
非线性系统
量子力学
程序设计语言
作者
Nicholas I. M. Gould,Philippe L. Toint
出处
期刊:Applied optimization
日期:2002-01-01
卷期号:: 149-179
被引量:33
标识
DOI:10.1007/978-1-4613-0263-6_8
摘要
We consider numerical methods for finding (weak) second-order critical points for large-scale non-convex quadratic programming problems. We describe two new methods. The first is of the active-set variety. Although convergent from any starting point, it is intended primarily for the case where a good estimate of the optimal active set can be predicted. The second is an interior-point trust-region type, and has proved capable of solving problems involving up to half a million unknowns and constraints. The solution of a key equality constrained subproblem, common to both methods, is described. The results of comparative tests on a large set of convex and non-convex quadratic programming examples are given.
科研通智能强力驱动
Strongly Powered by AbleSci AI