Large-Scale Frequent Episode Mining from Complex Event Sequences with Hierarchies

可扩展性 计算机科学 事件(粒子物理) 等级制度 序列(生物学) 背景(考古学) 经验法则 数据挖掘 关联规则学习 SPARK(编程语言) 比例(比率) 人工智能 理论计算机科学 机器学习 算法 数据库 程序设计语言 古生物学 物理 量子力学 生物 经济 市场经济 遗传学
作者
Xiang Ao,Haoran Shi,Jin Wang,Luo Zuo,Hongwei Li,Qing He
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:10 (4): 1-26 被引量:40
标识
DOI:10.1145/3326163
摘要

Frequent Episode Mining (FEM), which aims at mining frequent sub-sequences from a single long event sequence, is one of the essential building blocks for the sequence mining research field. Existing studies about FEM suffer from unsatisfied scalability when faced with complex sequences as it is an NP-complete problem for testing whether an episode occurs in a sequence. In this article, we propose a scalable, distributed framework to support FEM on “big” event sequences. As a rule of thumb, “big” illustrates an event sequence is either very long or with masses of simultaneous events. Meanwhile, the events in this article are arranged in a predefined hierarchy. It derives some abstractive events that can form episodes that may not directly appear in the input sequence. Specifically, we devise an event-centered and hierarchy-aware partitioning strategy to allocate events from different levels of the hierarchy into local processes. We then present an efficient special-purpose algorithm to improve the local mining performance. We also extend our framework to support maximal and closed episode mining in the context of event hierarchy, and to the best of our knowledge, we are the first attempt to define and discover hierarchy-aware maximal and closed episodes. We implement the proposed framework on Apache Spark and conduct experiments on both synthetic and real-world datasets. Experimental results demonstrate the efficiency and scalability of the proposed approach and show that we can find practical patterns when taking event hierarchies into account.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
故意的傲玉应助经法采纳,获得10
1秒前
上官若男应助经法采纳,获得10
1秒前
buno应助经法采纳,获得10
1秒前
1111应助经法采纳,获得10
1秒前
Lucas应助经法采纳,获得10
1秒前
Jasper应助经法采纳,获得10
1秒前
1秒前
习习应助经法采纳,获得10
1秒前
小鱼骑单车应助经法采纳,获得10
1秒前
辰柒发布了新的文献求助10
2秒前
英俊的铭应助经法采纳,获得10
2秒前
wgl发布了新的文献求助10
2秒前
领导范儿应助氨基酸采纳,获得30
2秒前
2秒前
科研通AI2S应助zink采纳,获得10
3秒前
科目三应助Jimmy采纳,获得10
3秒前
3秒前
3秒前
芋圆Z.发布了新的文献求助10
4秒前
4秒前
东皇太憨完成签到,获得积分10
4秒前
4秒前
5秒前
润润轩轩发布了新的文献求助10
5秒前
5秒前
orixero应助韭黄采纳,获得10
6秒前
gnufgg完成签到,获得积分10
6秒前
科研通AI5应助tabor采纳,获得10
6秒前
6秒前
互助互惠互通完成签到,获得积分10
6秒前
脑洞疼应助ziyiziyi采纳,获得10
7秒前
7秒前
7秒前
屹舟完成签到,获得积分10
8秒前
zjudxn关注了科研通微信公众号
8秒前
9秒前
9秒前
科研通AI5应助hu970采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759