Large-Scale Frequent Episode Mining from Complex Event Sequences with Hierarchies

可扩展性 计算机科学 事件(粒子物理) 等级制度 序列(生物学) 背景(考古学) 经验法则 数据挖掘 关联规则学习 SPARK(编程语言) 比例(比率) 人工智能 理论计算机科学 机器学习 算法 数据库 程序设计语言 生物 物理 古生物学 经济 量子力学 遗传学 市场经济
作者
Xiang Ao,Haoran Shi,Jin Wang,Luo Zuo,Hongwei Li,Qing He
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:10 (4): 1-26 被引量:40
标识
DOI:10.1145/3326163
摘要

Frequent Episode Mining (FEM), which aims at mining frequent sub-sequences from a single long event sequence, is one of the essential building blocks for the sequence mining research field. Existing studies about FEM suffer from unsatisfied scalability when faced with complex sequences as it is an NP-complete problem for testing whether an episode occurs in a sequence. In this article, we propose a scalable, distributed framework to support FEM on “big” event sequences. As a rule of thumb, “big” illustrates an event sequence is either very long or with masses of simultaneous events. Meanwhile, the events in this article are arranged in a predefined hierarchy. It derives some abstractive events that can form episodes that may not directly appear in the input sequence. Specifically, we devise an event-centered and hierarchy-aware partitioning strategy to allocate events from different levels of the hierarchy into local processes. We then present an efficient special-purpose algorithm to improve the local mining performance. We also extend our framework to support maximal and closed episode mining in the context of event hierarchy, and to the best of our knowledge, we are the first attempt to define and discover hierarchy-aware maximal and closed episodes. We implement the proposed framework on Apache Spark and conduct experiments on both synthetic and real-world datasets. Experimental results demonstrate the efficiency and scalability of the proposed approach and show that we can find practical patterns when taking event hierarchies into account.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张张发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
LX发布了新的文献求助10
3秒前
生动的鹰完成签到,获得积分10
4秒前
6秒前
科研通AI2S应助山城小肘子采纳,获得10
6秒前
6秒前
月亮发布了新的文献求助10
7秒前
4848完成签到,获得积分10
7秒前
调皮万怨发布了新的文献求助10
7秒前
Ffffff发布了新的文献求助20
7秒前
武理完成签到,获得积分10
9秒前
小蘑菇应助幸福的兔子采纳,获得10
9秒前
ssss完成签到,获得积分10
10秒前
汉堡包应助chang采纳,获得10
11秒前
12秒前
王加通发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
科研通AI2S应助张emo采纳,获得10
14秒前
16秒前
栗子鱼发布了新的文献求助10
18秒前
zhan发布了新的文献求助10
18秒前
王加通完成签到,获得积分10
19秒前
20秒前
大个应助月亮采纳,获得10
23秒前
23秒前
顾矜应助诗亭采纳,获得10
24秒前
杨枝甘露完成签到,获得积分20
24秒前
123发布了新的文献求助10
24秒前
qwe完成签到,获得积分10
25秒前
zhan完成签到,获得积分10
25秒前
fcc完成签到,获得积分20
25秒前
秋季完成签到,获得积分10
26秒前
chang发布了新的文献求助10
27秒前
研友_VZG7GZ应助Ffffff采纳,获得10
27秒前
科研小趴菜完成签到,获得积分10
28秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962605
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141892
捐赠科研通 3241353
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803501