亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mixed‐effects models for slope‐based endpoints in clinical trials of chronic kidney disease

审查(临床试验) 异方差 肾脏疾病 肾功能 随机效应模型 医学 临床试验 统计 计量经济学 重症监护医学 计算机科学 数学 荟萃分析 内科学
作者
Edward F. Vonesh,Hocine Tighiouart,Jian Ying,Hiddo J.L. Heerspink,Julia B. Lewis,Natalie Staplin,Lesley A. Inker,Tom Greene
出处
期刊:Statistics in Medicine [Wiley]
卷期号:38 (22): 4218-4239 被引量:43
标识
DOI:10.1002/sim.8282
摘要

In March of 2018, the National Kidney Foundation, in collaboration with the US Food and Drug Administration and the European Medicines Agency, sponsored a workshop in which surrogate endpoints other than currently established event‐time endpoints for clinical trials in chronic kidney disease (CKD) were presented and discussed. One such endpoint is a slope‐based parameter describing the rate of decline in the estimated glomerular filtration rate (eGFR) over time. There are a number of challenges that can complicate such slope‐based analyses in CKD trials. These include the possibility of an early but short‐term acute treatment effect on the slope, both within‐subject and between‐subject heteroscedasticity, and informative censoring resulting from patient dropout due to death or onset of end‐stage kidney disease. To address these issues, we first consider a class of mixed‐effects models for eGFR that are linear in the parameters describing the mean eGFR trajectory but which are intrinsically nonlinear when a power‐of‐mean variance structure is used to model within‐subject heteroscedasticity. We then combine the model for eGFR with a model for time to dropout to form a class of shared parameter models which, under the right specification of shared random effects, can minimize bias due to informative censoring. The models and methods of analysis are described and illustrated using data from two CKD studies one of which was one of 56 studies made available to the workshop analytical team. Lastly, methodology and accompanying software for prospectively determining sample size/power estimates are presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
26秒前
bkagyin应助橘子采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得10
36秒前
乐乐应助求学狗采纳,获得10
39秒前
46秒前
求学狗发布了新的文献求助10
52秒前
ceeray23发布了新的文献求助200
54秒前
艾莉完成签到 ,获得积分10
54秒前
求学狗完成签到,获得积分10
1分钟前
1分钟前
热情依白发布了新的文献求助10
1分钟前
完美世界应助axiao采纳,获得10
1分钟前
1分钟前
香菜张完成签到,获得积分10
1分钟前
axiao发布了新的文献求助10
1分钟前
axiao完成签到,获得积分10
1分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
青萍子林完成签到,获得积分10
3分钟前
大个应助Ahan采纳,获得10
3分钟前
ZIVON完成签到,获得积分10
3分钟前
3分钟前
Ahan发布了新的文献求助10
3分钟前
汪洋一叶完成签到,获得积分10
4分钟前
科目三应助ceeray23采纳,获得20
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
CodeCraft应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Expectations: Teaching Writing from the Reader's Perspective 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502942
求助须知:如何正确求助?哪些是违规求助? 4598615
关于积分的说明 14464678
捐赠科研通 4532264
什么是DOI,文献DOI怎么找? 2483868
邀请新用户注册赠送积分活动 1467072
关于科研通互助平台的介绍 1439766