An integrated molecular diagnostic report for heart transplant biopsies using an ensemble of diagnostic algorithms

医学 队列 医学诊断 人工智能 二元分类 机器学习 随机森林 算法 接收机工作特性 过度诊断 病理 放射科 支持向量机 计算机科学
作者
Michael Parkes,A.Z. Aliabadi,Martín Cadeiras,María G. Crespo‐Leiro,Mario C. Deng,E.C. DePasquale,J. Goekler,Daniel H. Kim,Jon Kobashigawa,Alexandre Loupy,Peter S. Macdonald,Luciano Potena,Andreas Zuckermann,Philip F. Halloran
出处
期刊:Journal of Heart and Lung Transplantation [Elsevier]
卷期号:38 (6): 636-646 被引量:48
标识
DOI:10.1016/j.healun.2019.01.1318
摘要

BACKGROUND

We previously reported a microarray-based diagnostic system for heart transplant endomyocardial biopsies (EMBs), using either 3-archetype (3AA) or 4-archetype (4AA) unsupervised algorithms to estimate rejection. In the present study we examined the stability of machine-learning algorithms in new biopsies, compared 3AA vs 4AA algorithms, assessed supervised binary classifiers trained on histologic or molecular diagnoses, created a report combining many scores into an ensemble of estimates, and examined possible automated sign-outs.

METHODS

We studied 889 EMBs from 454 transplant recipients at 8 centers: the initial cohort (N = 331) and a new cohort (N = 558). Published 3AA algorithms derived in Cohort 331 were tested in Cohort 558, the 3AA and 4AA models were compared, and supervised binary classifiers were created.

RESULTS

A`lgorithms derived in Cohort 331 performed similarly in new biopsies despite differences in case mix. In the combined cohort, the 4AA model, including a parenchymal injury score, retained correlations with histologic rejection and DSA similar to the 3AA model. Supervised molecular classifiers predicted molecular rejection (areas under the curve [AUCs] >0.87) better than histologic rejection (AUCs <0.78), even when trained on histology diagnoses. A report incorporating many AA and binary classifier scores interpreted by 1 expert showed highly significant agreement with histology (p < 0.001), but with many discrepancies, as expected from the known noise in histology. An automated random forest score closely predicted expert diagnoses, confirming potential for automated signouts.

CONCLUSIONS

Molecular algorithms are stable in new populations and can be assembled into an ensemble that combines many supervised and unsupervised estimates of the molecular disease states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多吃青菜少动脑完成签到,获得积分10
1秒前
MAOJCFK完成签到,获得积分20
1秒前
脑洞疼应助仔仔采纳,获得10
4秒前
震动的听枫完成签到,获得积分10
5秒前
顺利毕业发布了新的文献求助10
5秒前
5秒前
VickyZWY完成签到 ,获得积分20
5秒前
NexusExplorer应助shania采纳,获得10
6秒前
6秒前
派大星的海洋裤完成签到,获得积分10
7秒前
7秒前
zz完成签到,获得积分10
7秒前
curtisness应助小垃圾爱学习采纳,获得10
8秒前
9秒前
9秒前
wangke发布了新的文献求助10
10秒前
石火发布了新的文献求助10
11秒前
小杜发布了新的文献求助10
11秒前
14秒前
15秒前
rachel03发布了新的文献求助10
17秒前
18秒前
Wu完成签到,获得积分10
18秒前
19秒前
shania发布了新的文献求助10
19秒前
19秒前
无语的如音完成签到,获得积分10
19秒前
石火完成签到,获得积分10
20秒前
qqqyoyoyo完成签到,获得积分20
21秒前
奋斗的小张完成签到 ,获得积分10
21秒前
LiangRen完成签到 ,获得积分10
22秒前
仔仔发布了新的文献求助10
23秒前
Ava应助IAMXC采纳,获得10
24秒前
qqqyoyoyo发布了新的文献求助10
24秒前
咖啡豆应助山长子采纳,获得20
25秒前
25秒前
26秒前
NexusExplorer应助张晓芳采纳,获得10
27秒前
27秒前
无奈以南完成签到 ,获得积分10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143769
求助须知:如何正确求助?哪些是违规求助? 2795257
关于积分的说明 7813954
捐赠科研通 2451248
什么是DOI,文献DOI怎么找? 1304400
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601413