An integrated molecular diagnostic report for heart transplant biopsies using an ensemble of diagnostic algorithms

医学 队列 医学诊断 人工智能 二元分类 机器学习 随机森林 算法 接收机工作特性 过度诊断 病理 放射科 支持向量机 计算机科学
作者
Michael Parkes,A.Z. Aliabadi,Martín Cadeiras,María G. Crespo‐Leiro,Mario C. Deng,E.C. DePasquale,J. Goekler,Daniel H. Kim,Jon Kobashigawa,Alexandre Loupy,Peter S. Macdonald,Luciano Potena,Andreas Zuckermann,Philip F. Halloran
出处
期刊:Journal of Heart and Lung Transplantation [Elsevier BV]
卷期号:38 (6): 636-646 被引量:53
标识
DOI:10.1016/j.healun.2019.01.1318
摘要

BACKGROUND

We previously reported a microarray-based diagnostic system for heart transplant endomyocardial biopsies (EMBs), using either 3-archetype (3AA) or 4-archetype (4AA) unsupervised algorithms to estimate rejection. In the present study we examined the stability of machine-learning algorithms in new biopsies, compared 3AA vs 4AA algorithms, assessed supervised binary classifiers trained on histologic or molecular diagnoses, created a report combining many scores into an ensemble of estimates, and examined possible automated sign-outs.

METHODS

We studied 889 EMBs from 454 transplant recipients at 8 centers: the initial cohort (N = 331) and a new cohort (N = 558). Published 3AA algorithms derived in Cohort 331 were tested in Cohort 558, the 3AA and 4AA models were compared, and supervised binary classifiers were created.

RESULTS

A`lgorithms derived in Cohort 331 performed similarly in new biopsies despite differences in case mix. In the combined cohort, the 4AA model, including a parenchymal injury score, retained correlations with histologic rejection and DSA similar to the 3AA model. Supervised molecular classifiers predicted molecular rejection (areas under the curve [AUCs] >0.87) better than histologic rejection (AUCs <0.78), even when trained on histology diagnoses. A report incorporating many AA and binary classifier scores interpreted by 1 expert showed highly significant agreement with histology (p < 0.001), but with many discrepancies, as expected from the known noise in histology. An automated random forest score closely predicted expert diagnoses, confirming potential for automated signouts.

CONCLUSIONS

Molecular algorithms are stable in new populations and can be assembled into an ensemble that combines many supervised and unsupervised estimates of the molecular disease states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助孩子气采纳,获得10
1秒前
wenji发布了新的文献求助20
1秒前
2秒前
科研通AI2S应助谢志超采纳,获得10
2秒前
3秒前
zhangdae发布了新的文献求助10
3秒前
烟花应助slj采纳,获得10
4秒前
rr完成签到,获得积分10
4秒前
duoduo完成签到,获得积分10
4秒前
Rondab应助wiwi采纳,获得30
4秒前
整齐荟发布了新的文献求助10
5秒前
5秒前
7秒前
嘻嘻哈哈发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
谢志超完成签到,获得积分10
8秒前
ding应助裴向雪采纳,获得10
9秒前
liu发布了新的文献求助10
9秒前
9秒前
duoduo发布了新的文献求助10
12秒前
HYH发布了新的文献求助10
12秒前
12秒前
13秒前
LHT完成签到,获得积分10
14秒前
14秒前
14秒前
追寻夏烟完成签到 ,获得积分10
14秒前
samu发布了新的文献求助10
14秒前
爆米花应助科研通管家采纳,获得10
15秒前
wanci应助科研通管家采纳,获得10
15秒前
冷静凡天应助科研通管家采纳,获得10
15秒前
Rondab应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Xiaoxiao应助科研通管家采纳,获得20
15秒前
高乘宽应助科研通管家采纳,获得10
15秒前
qq应助科研通管家采纳,获得10
15秒前
mlh479应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578