Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats

无线电技术 人工智能 医学 分类器(UML) 卷积神经网络 深度学习 癌症 放射基因组学 疾病 计算机科学 机器学习 计算生物学 生物 病理 内科学
作者
Sandy Napel,Wei Mu,Bruna V. Jardim‐Perassi,Hugo J.W.L. Aerts,Robert J. Gillies
出处
期刊:Cancer [Wiley]
卷期号:124 (24): 4633-4649 被引量:154
标识
DOI:10.1002/cncr.31630
摘要

Although cancer often is referred to as “a disease of the genes,” it is indisputable that the (epi)genetic properties of individual cancer cells are highly variable, even within the same tumor. Hence, preexisting resistant clones will emerge and proliferate after therapeutic selection that targets sensitive clones. Herein, the authors propose that quantitative image analytics, known as “radiomics,” can be used to quantify and characterize this heterogeneity. Virtually every patient with cancer is imaged radiologically. Radiomics is predicated on the beliefs that these images reflect underlying pathophysiologies, and that they can be converted into mineable data for improved diagnosis, prognosis, prediction, and therapy monitoring. In the last decade, the radiomics of cancer has grown from a few laboratories to a worldwide enterprise. During this growth, radiomics has established a convention, wherein a large set of annotated image features (1‐2000 features) are extracted from segmented regions of interest and used to build classifier models to separate individual patients into their appropriate class (eg, indolent vs aggressive disease). An extension of this conventional radiomics is the application of “deep learning,” wherein convolutional neural networks can be used to detect the most informative regions and features without human intervention. A further extension of radiomics involves automatically segmenting informative subregions (“habitats”) within tumors, which can be linked to underlying tumor pathophysiology. The goal of the radiomics enterprise is to provide informed decision support for the practice of precision oncology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
眼睛大的寄容完成签到 ,获得积分10
2秒前
zhangjianzeng完成签到 ,获得积分10
2秒前
俞安珊完成签到,获得积分10
9秒前
十月的天空完成签到,获得积分10
15秒前
老福贵儿应助科研通管家采纳,获得10
21秒前
慕青应助科研通管家采纳,获得10
21秒前
所所应助科研通管家采纳,获得30
21秒前
kanglan完成签到,获得积分10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
尉迟希望应助科研通管家采纳,获得10
21秒前
一路硕博应助科研通管家采纳,获得30
21秒前
田様应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
老福贵儿应助科研通管家采纳,获得10
21秒前
天天快乐应助科研通管家采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
Hanoi347应助科研通管家采纳,获得10
22秒前
momo应助科研通管家采纳,获得10
22秒前
打打应助科研通管家采纳,获得10
22秒前
小马甲应助科研通管家采纳,获得10
22秒前
大模型应助科研通管家采纳,获得10
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
22秒前
故酒应助科研通管家采纳,获得10
22秒前
lixiniverson完成签到 ,获得积分0
25秒前
韩大帅完成签到,获得积分20
26秒前
huhuhu完成签到,获得积分10
27秒前
十月完成签到 ,获得积分10
28秒前
GB完成签到 ,获得积分10
30秒前
32秒前
TanXu完成签到 ,获得积分10
37秒前
韩大帅发布了新的文献求助20
38秒前
智叟先生完成签到 ,获得积分10
40秒前
笨笨听枫完成签到 ,获得积分10
42秒前
文曲星本星完成签到,获得积分10
44秒前
CandyJump完成签到,获得积分10
45秒前
Robin95完成签到 ,获得积分10
47秒前
热心易绿完成签到 ,获得积分10
50秒前
许安完成签到,获得积分10
51秒前
panpanliumin完成签到,获得积分0
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498664
求助须知:如何正确求助?哪些是违规求助? 4595831
关于积分的说明 14449958
捐赠科研通 4528777
什么是DOI,文献DOI怎么找? 2481732
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438563