Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats

无线电技术 人工智能 医学 分类器(UML) 卷积神经网络 深度学习 癌症 放射基因组学 疾病 计算机科学 机器学习 计算生物学 生物 病理 内科学
作者
Sandy Napel,Wei Mu,Bruna V. Jardim‐Perassi,Hugo J.W.L. Aerts,Robert J. Gillies
出处
期刊:Cancer [Wiley]
卷期号:124 (24): 4633-4649 被引量:154
标识
DOI:10.1002/cncr.31630
摘要

Although cancer often is referred to as “a disease of the genes,” it is indisputable that the (epi)genetic properties of individual cancer cells are highly variable, even within the same tumor. Hence, preexisting resistant clones will emerge and proliferate after therapeutic selection that targets sensitive clones. Herein, the authors propose that quantitative image analytics, known as “radiomics,” can be used to quantify and characterize this heterogeneity. Virtually every patient with cancer is imaged radiologically. Radiomics is predicated on the beliefs that these images reflect underlying pathophysiologies, and that they can be converted into mineable data for improved diagnosis, prognosis, prediction, and therapy monitoring. In the last decade, the radiomics of cancer has grown from a few laboratories to a worldwide enterprise. During this growth, radiomics has established a convention, wherein a large set of annotated image features (1‐2000 features) are extracted from segmented regions of interest and used to build classifier models to separate individual patients into their appropriate class (eg, indolent vs aggressive disease). An extension of this conventional radiomics is the application of “deep learning,” wherein convolutional neural networks can be used to detect the most informative regions and features without human intervention. A further extension of radiomics involves automatically segmenting informative subregions (“habitats”) within tumors, which can be linked to underlying tumor pathophysiology. The goal of the radiomics enterprise is to provide informed decision support for the practice of precision oncology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助reform采纳,获得10
刚刚
噜啦噜啦发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
3秒前
雪雪儿发布了新的文献求助10
4秒前
5秒前
妙漉发布了新的文献求助10
5秒前
星辰大海应助谦让鹏涛采纳,获得10
5秒前
5秒前
6秒前
7秒前
hi_traffic完成签到,获得积分10
7秒前
平常的老头完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
琪玛苏发布了新的文献求助10
10秒前
chenxy完成签到,获得积分10
10秒前
10秒前
11秒前
无花果应助Han采纳,获得10
11秒前
11秒前
edk101发布了新的文献求助10
12秒前
稳重傲柔发布了新的文献求助10
12秒前
亭子发布了新的文献求助10
13秒前
易安发布了新的文献求助10
13秒前
帅气夏菡发布了新的文献求助10
14秒前
ding应助噜啦噜啦采纳,获得10
15秒前
15秒前
黄俊发布了新的文献求助10
16秒前
19秒前
SYLH应助吃饱再睡采纳,获得10
20秒前
Lucas应助吃饱再睡采纳,获得10
20秒前
共享精神应助稳重傲柔采纳,获得10
20秒前
22秒前
23秒前
Owen应助bolierding采纳,获得50
23秒前
23秒前
脑洞疼应助悦耳的依风采纳,获得10
24秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959477
求助须知:如何正确求助?哪些是违规求助? 3505697
关于积分的说明 11125320
捐赠科研通 3237538
什么是DOI,文献DOI怎么找? 1789202
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802868