化学
阳极
电解质
合金
电化学
电池(电)
剥离(纤维)
双金属片
枝晶(数学)
双金属
碱金属
电镀(地质)
化学工程
材料科学
金属
无机化学
电极
复合材料
地质学
有机化学
功率(物理)
物理化学
工程类
几何学
物理
量子力学
数学
地球物理学
作者
Jinling Ma,Fanlu Meng,Yue Yu,Dapeng Liu,Jun‐Min Yan,Yu Zhang,Xinbo Zhang,Qing Jiang
出处
期刊:Nature Chemistry
[Springer Nature]
日期:2018-11-01
卷期号:11 (1): 64-70
被引量:287
标识
DOI:10.1038/s41557-018-0166-9
摘要
Rechargeable aprotic alkali metal (Li or Na)-O2 batteries are the subject of great interest because of their high theoretical specific energy. However, the growth of dendrites and cracks at the Li or Na anode, as well as their corrosive oxidation lead to poor cycling stability and safety issues. Understanding the mechanism and improving Li/Na-ion plating and stripping electrochemistry are therefore essential to realizing their technological potential. Here, we report how the use of a Li-Na alloy anode and an electrolyte additive realizes an aprotic bimetal Li-Na alloy-O2 battery with improved cycling stability. Electrochemical investigations show that stripping and plating of Li and Na and the robust and flexible passivation film formed in situ (by 1,3-dioxolane additive reacting with the Li-Na alloy) suppress dendrite and buffer alloy anode volume expansion and thus prevent cracking, avoiding electrolyte consumption and ensuring high electron transport efficiency and continued electrochemical reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI