Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst

异质结 三氧化钨 光催化 石墨氮化碳 材料科学 纳米技术 蚀刻(微加工) 催化作用 光电子学 图层(电子) 化学工程 化学 工程类 生物化学 冶金
作者
Junwei Fu,Quanlong Xu,Jingxiang Low,Chuanjia Jiang,Jiaguo Yu
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:243: 556-565 被引量:2280
标识
DOI:10.1016/j.apcatb.2018.11.011
摘要

The appropriate interfacial contact of heterojunction photocatalysts plays a critical role in transfer/separation of interfacial charge carriers. Design of two-dimensional (2D)/2D surface-to-surface heterojunction is an effective method for improving photocatalytic activity since greater contact area can enhance interfacial charge transfer rate. Herein, ultrathin 2D/2D WO3/g-C3N4 step-like composite heterojunction photocatalysts were fabricated by electrostatic self-assembly of ultrathin tungsten trioxide (WO3) and graphitic carbon nitride (g-C3N4) nanosheets. The ultrathin WO3 and g-C3N4 nanosheets were obtained by electrostatic-assisted ultrasonic exfoliation of bulk WO3 and a two-step thermal-etching of bulk g-C3N4, respectively. The thickness of ultrathin WO3 and g-C3N4 nanosheets are 2.5–3.5 nm, which is equivalent to 5–8 atomic or molecular layer thickness. This ultrathin layered heterojunction structure can enhance surface photocatalytic rate because photogenerated electrons and holes at heterogeneous interface more easily transfer to surface of photocatalysts. Therefore, the obtained ultrathin 2D/2D WO3/g-C3N4 step-scheme (S-scheme) heterojunction photocatalysts exhibited better H2-production activity than pure g-C3N4 and WO3 with the same loading amount of Pt as cocatalyst. The mechanism and driving force of charge transfer and separation in S-scheme heterojunction photocatalysts are investigated and discussed. This investigation will provide new insight about designing and constructing novel S-scheme heterojunction photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CipherSage应助王w采纳,获得10
1秒前
丘比特应助LAN0528采纳,获得10
1秒前
1秒前
领导范儿应助bofu采纳,获得10
1秒前
羊见见完成签到,获得积分10
2秒前
boshi发布了新的文献求助10
2秒前
十一发布了新的文献求助10
3秒前
一一应助德伯88采纳,获得30
4秒前
上官若男应助儒雅寻菱采纳,获得10
4秒前
LSS发布了新的文献求助10
6秒前
7秒前
王w完成签到,获得积分20
8秒前
从容山兰完成签到,获得积分20
9秒前
流光闪过的线完成签到 ,获得积分10
10秒前
爆米花应助bofu采纳,获得10
11秒前
12秒前
12秒前
晶晶妹妹发布了新的文献求助10
13秒前
13秒前
高大沧海完成签到,获得积分10
14秒前
orixero应助从容山兰采纳,获得10
14秒前
英俊马里奥完成签到,获得积分20
16秒前
时某人完成签到,获得积分10
16秒前
Hello应助lee采纳,获得10
16秒前
科研通AI5应助yuyuyu采纳,获得30
16秒前
19秒前
LAN0528发布了新的文献求助10
19秒前
shang发布了新的文献求助10
22秒前
科研通AI5应助君君采纳,获得20
22秒前
22秒前
英姑应助科研通管家采纳,获得10
23秒前
充电宝应助科研通管家采纳,获得10
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
香蕉觅云应助bofu采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
大模型应助科研通管家采纳,获得30
23秒前
bkagyin应助科研通管家采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559805
求助须知:如何正确求助?哪些是违规求助? 3134281
关于积分的说明 9406327
捐赠科研通 2834314
什么是DOI,文献DOI怎么找? 1558059
邀请新用户注册赠送积分活动 727812
科研通“疑难数据库(出版商)”最低求助积分说明 716522