Establishing the Minimal Clinically Important Difference for the Hospital Anxiety and Depression Scale in Patients With Cardiovascular Disease

最小临床重要差异 医学 医院焦虑抑郁量表 焦虑 物理疗法 标准误差 萧条(经济学) 内科学 疾病 精神科 随机对照试验 统计 数学 宏观经济学 经济
作者
Kyle R. Lemay,Heather Tulloch,Andrew Pipe,Jennifer L. Reed
出处
期刊:Journal of Cardiopulmonary Rehabilitation and Prevention [Lippincott Williams & Wilkins]
卷期号:39 (6): E6-E11 被引量:204
标识
DOI:10.1097/hcr.0000000000000379
摘要

The Hospital Anxiety and Depression Scale (HADS) is frequently used by clinicians to assess anxiety and depression in patients with cardiovascular disease; yet, its minimal clinically important difference (MCID) has not been established. The purpose of this study was to establish an MCID for the HADS in patients with cardiovascular disease.A sample of 591 patients (74% male; ethnicity = 89% white; mean ± standard deviation [SD]: age = 63 ± 10 yr; and body mass index = 29.1 ± 5.6 kg/m) with cardiovascular disease enrolled in a 3-mo cardiac rehabilitation program were included in this study. The MCID for the HADS was estimated using distribution-based methods (ie, standard deviation, effect size, standard error of measurement, and minimal detectable change), anchor-based methods (ie, health transition question, correlation and linear regression, and receiver operating characteristic curve), and Delphi methodology (ie, clinical consensus).A total of 18 MCID values were calculated ranging from 0.81 to 5.21 (Anxiety subscale) and 0.5 to 5.57 (Depression subscale). The final MCID for the HADS, triangulated from the distribution-based, anchor-based, and Delphi-based findings, was 1.7 points.Our work provides the first estimates of an MCID by triangulating multiple methodologies for the HADS in patients with cardiovascular disease. This MCID may serve as an indicator of treatment success for clinicians and researchers and guide future interventions to improve the mental health of patients with cardiovascular disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
夜夜完成签到,获得积分10
1秒前
1秒前
Cactus应助liukang172采纳,获得10
2秒前
NexusExplorer应助吼吼哈哈采纳,获得10
2秒前
乐乐应助Raiden采纳,获得20
2秒前
2秒前
轻松绿旋发布了新的文献求助10
3秒前
hzd_23发布了新的文献求助10
4秒前
完美问玉完成签到,获得积分10
4秒前
乙醇完成签到 ,获得积分10
5秒前
云澈发布了新的文献求助10
6秒前
hdisyd完成签到 ,获得积分10
6秒前
蛋挞完成签到,获得积分10
7秒前
Keyl发布了新的文献求助50
7秒前
8秒前
Hiller发布了新的文献求助10
8秒前
8秒前
8秒前
蛋挞发布了新的文献求助10
9秒前
9秒前
9秒前
哇卡卡应助bingchem采纳,获得30
11秒前
11秒前
阳光火车发布了新的文献求助10
12秒前
12秒前
felix发布了新的文献求助10
13秒前
chao Liu完成签到,获得积分10
13秒前
13秒前
14秒前
所所应助靓丽的山蝶采纳,获得10
14秒前
Raiden发布了新的文献求助20
14秒前
222发布了新的文献求助10
15秒前
研友_Z7Xdl8发布了新的文献求助10
15秒前
酷波er应助沉默靳采纳,获得10
16秒前
老实莫言发布了新的文献求助10
16秒前
18秒前
正之发布了新的文献求助10
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427