Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia

山崩 逻辑回归 接收机工作特性 岩性 二元分析 地质学 仰角(弹道) 人工神经网络 多元统计 地貌学 统计 人工智能 几何学 数学 计算机科学 古生物学
作者
Aril Aditian,Tetsuya Kubota,Yoshinori Shinohara
出处
期刊:Geomorphology [Elsevier]
卷期号:318: 101-111 被引量:470
标识
DOI:10.1016/j.geomorph.2018.06.006
摘要

This study aims to evaluate landslide causative factors in landslide susceptibility assessments and to compare landslide susceptibility models based on the bivariate frequency ratio (FR), multivariate logistic regression (LR), and artificial neural network (ANN). The majority of landslide occurrences in Ambon, Indonesia is induced by heavy rainfall events where slope failures occur mostly on steep slopes thereby endangering municipality areas at the base of the hills. Eight landslide causative factors were considered in the landslide susceptibility assessments. The causative factors were elevation, slope angle, slope aspect, proximity to stream network, lithology, density of geological boundaries, proximity to faults, and proximity to the road network. The output susceptibility maps were reclassified into five classes ranging from very low to very high susceptibility using Jenks natural breaks method. Twenty percent of all mapped landslides were used as the validation of the susceptibility models. The validity and the accuracy of each model were tested by calculating areas under receiver operating characteristic curves (ROCs), and the areas under the curve (AUC) for the success rate curves of FR, LR, and ANN were 0.688, 0.687, and 0.734, respectively. The AUC for the prediction rate curve of FR, LR, and ANN were 0.668, 0.667, and 0.717, respectively. All findings of the models show good results with the accuracy of all models being higher than 66%. The ANN method proved to be superior in explaining the relationship of landslide with each factor studied.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ll完成签到,获得积分10
刚刚
nqterysc发布了新的文献求助10
2秒前
YuGe完成签到,获得积分10
3秒前
3秒前
totoling完成签到 ,获得积分10
4秒前
yellow完成签到,获得积分10
5秒前
在水一方应助MO采纳,获得10
5秒前
5秒前
内向的涵菡完成签到,获得积分10
6秒前
8秒前
琼仔仔完成签到 ,获得积分10
9秒前
jianguo完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
康轲完成签到,获得积分0
11秒前
岁月旧曾谙完成签到,获得积分10
12秒前
wanci应助甘地采纳,获得10
12秒前
lmx发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
认真的纸飞机完成签到 ,获得积分10
13秒前
穆奕完成签到 ,获得积分10
13秒前
多情的青烟完成签到,获得积分10
14秒前
pp完成签到,获得积分10
14秒前
不怕考试的赵无敌完成签到 ,获得积分10
14秒前
小蓝完成签到,获得积分10
17秒前
ANT完成签到 ,获得积分10
17秒前
星星星完成签到,获得积分10
17秒前
田様应助金少爷采纳,获得10
18秒前
橘子林完成签到,获得积分10
20秒前
杭紫雪发布了新的文献求助10
20秒前
舒心的青亦完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
24秒前
白瑾完成签到,获得积分10
26秒前
解语花031发布了新的文献求助10
27秒前
科目三应助子木采纳,获得10
30秒前
31秒前
斯文败类应助科研通管家采纳,获得10
31秒前
31秒前
斯文败类应助科研通管家采纳,获得10
31秒前
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773484
求助须知:如何正确求助?哪些是违规求助? 5611745
关于积分的说明 15431379
捐赠科研通 4905949
什么是DOI,文献DOI怎么找? 2639966
邀请新用户注册赠送积分活动 1587841
关于科研通互助平台的介绍 1542900