Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia

山崩 逻辑回归 接收机工作特性 岩性 二元分析 地质学 仰角(弹道) 人工神经网络 多元统计 地貌学 统计 人工智能 几何学 数学 计算机科学 古生物学
作者
Aril Aditian,Tetsuya Kubota,Yoshinori Shinohara
出处
期刊:Geomorphology [Elsevier]
卷期号:318: 101-111 被引量:470
标识
DOI:10.1016/j.geomorph.2018.06.006
摘要

This study aims to evaluate landslide causative factors in landslide susceptibility assessments and to compare landslide susceptibility models based on the bivariate frequency ratio (FR), multivariate logistic regression (LR), and artificial neural network (ANN). The majority of landslide occurrences in Ambon, Indonesia is induced by heavy rainfall events where slope failures occur mostly on steep slopes thereby endangering municipality areas at the base of the hills. Eight landslide causative factors were considered in the landslide susceptibility assessments. The causative factors were elevation, slope angle, slope aspect, proximity to stream network, lithology, density of geological boundaries, proximity to faults, and proximity to the road network. The output susceptibility maps were reclassified into five classes ranging from very low to very high susceptibility using Jenks natural breaks method. Twenty percent of all mapped landslides were used as the validation of the susceptibility models. The validity and the accuracy of each model were tested by calculating areas under receiver operating characteristic curves (ROCs), and the areas under the curve (AUC) for the success rate curves of FR, LR, and ANN were 0.688, 0.687, and 0.734, respectively. The AUC for the prediction rate curve of FR, LR, and ANN were 0.668, 0.667, and 0.717, respectively. All findings of the models show good results with the accuracy of all models being higher than 66%. The ANN method proved to be superior in explaining the relationship of landslide with each factor studied.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郝郝完成签到,获得积分10
刚刚
123完成签到,获得积分20
刚刚
英俊的铭应助我想要名字采纳,获得10
1秒前
等待雅寒完成签到,获得积分10
1秒前
1秒前
1秒前
妙木仙发布了新的文献求助10
2秒前
蓝色的鱼完成签到,获得积分10
2秒前
568zhzu完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
123发布了新的文献求助10
3秒前
4秒前
勤奋初之发布了新的文献求助30
4秒前
黄小皮发布了新的文献求助10
4秒前
月半完成签到,获得积分10
5秒前
浮游窥天完成签到,获得积分10
5秒前
5秒前
Akim应助光亮的友容采纳,获得30
5秒前
hay发布了新的文献求助10
5秒前
会飞的拿铁完成签到,获得积分10
6秒前
高高的糜完成签到,获得积分10
7秒前
ding应助马鸣笳采纳,获得10
8秒前
就这样发布了新的文献求助10
8秒前
zxj完成签到,获得积分10
8秒前
Xiaoyan完成签到,获得积分10
9秒前
ANKAR发布了新的文献求助10
10秒前
向上向上向上完成签到,获得积分10
10秒前
羊羊羊完成签到,获得积分10
10秒前
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
Yaaaaaa发布了新的文献求助10
11秒前
汉堡包应助薛定谔的猫采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
enio完成签到,获得积分10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512726
求助须知:如何正确求助?哪些是违规求助? 4607156
关于积分的说明 14503411
捐赠科研通 4542602
什么是DOI,文献DOI怎么找? 2489110
邀请新用户注册赠送积分活动 1471198
关于科研通互助平台的介绍 1443233