Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia

山崩 逻辑回归 接收机工作特性 岩性 二元分析 地质学 仰角(弹道) 人工神经网络 多元统计 地貌学 统计 人工智能 几何学 数学 计算机科学 古生物学
作者
Aril Aditian,Tetsuya Kubota,Yoshinori Shinohara
出处
期刊:Geomorphology [Elsevier]
卷期号:318: 101-111 被引量:389
标识
DOI:10.1016/j.geomorph.2018.06.006
摘要

This study aims to evaluate landslide causative factors in landslide susceptibility assessments and to compare landslide susceptibility models based on the bivariate frequency ratio (FR), multivariate logistic regression (LR), and artificial neural network (ANN). The majority of landslide occurrences in Ambon, Indonesia is induced by heavy rainfall events where slope failures occur mostly on steep slopes thereby endangering municipality areas at the base of the hills. Eight landslide causative factors were considered in the landslide susceptibility assessments. The causative factors were elevation, slope angle, slope aspect, proximity to stream network, lithology, density of geological boundaries, proximity to faults, and proximity to the road network. The output susceptibility maps were reclassified into five classes ranging from very low to very high susceptibility using Jenks natural breaks method. Twenty percent of all mapped landslides were used as the validation of the susceptibility models. The validity and the accuracy of each model were tested by calculating areas under receiver operating characteristic curves (ROCs), and the areas under the curve (AUC) for the success rate curves of FR, LR, and ANN were 0.688, 0.687, and 0.734, respectively. The AUC for the prediction rate curve of FR, LR, and ANN were 0.668, 0.667, and 0.717, respectively. All findings of the models show good results with the accuracy of all models being higher than 66%. The ANN method proved to be superior in explaining the relationship of landslide with each factor studied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助aaaaa采纳,获得10
1秒前
mumu发布了新的文献求助10
2秒前
赘婿应助蓝薄荷采纳,获得10
4秒前
4秒前
乐乐应助irisxxxx采纳,获得10
5秒前
等风来完成签到,获得积分10
5秒前
9秒前
兮之心完成签到 ,获得积分10
9秒前
伍子丐的猫完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
irisxxxx给irisxxxx的求助进行了留言
12秒前
14秒前
咖啡味椰果完成签到 ,获得积分10
14秒前
huangzpp发布了新的文献求助30
14秒前
简单完成签到,获得积分20
16秒前
冯昊发布了新的文献求助10
16秒前
mumu完成签到,获得积分20
17秒前
任蛹完成签到,获得积分10
18秒前
科研通AI2S应助完美的海秋采纳,获得10
18秒前
简单发布了新的文献求助10
19秒前
今后应助soar采纳,获得30
19秒前
yyy发布了新的文献求助10
19秒前
S杨完成签到,获得积分10
21秒前
默默的问玉完成签到,获得积分10
22秒前
FFF123完成签到,获得积分10
22秒前
23秒前
枘棋完成签到 ,获得积分10
24秒前
26秒前
受伤芝麻完成签到,获得积分10
26秒前
28秒前
yxy完成签到,获得积分10
28秒前
不打烊吗完成签到,获得积分20
28秒前
hoo完成签到 ,获得积分10
29秒前
yordeabese完成签到,获得积分10
29秒前
moodys完成签到,获得积分10
31秒前
yukikaze发布了新的文献求助10
32秒前
myf发布了新的文献求助10
33秒前
示羊发布了新的文献求助10
34秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243630
求助须知:如何正确求助?哪些是违规求助? 2887516
关于积分的说明 8248754
捐赠科研通 2556147
什么是DOI,文献DOI怎么找? 1384291
科研通“疑难数据库(出版商)”最低求助积分说明 649827
邀请新用户注册赠送积分活动 625755