Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia

山崩 逻辑回归 接收机工作特性 岩性 二元分析 地质学 仰角(弹道) 人工神经网络 多元统计 地貌学 统计 人工智能 几何学 数学 计算机科学 古生物学
作者
Aril Aditian,Tetsuya Kubota,Yoshinori Shinohara
出处
期刊:Geomorphology [Elsevier]
卷期号:318: 101-111 被引量:470
标识
DOI:10.1016/j.geomorph.2018.06.006
摘要

This study aims to evaluate landslide causative factors in landslide susceptibility assessments and to compare landslide susceptibility models based on the bivariate frequency ratio (FR), multivariate logistic regression (LR), and artificial neural network (ANN). The majority of landslide occurrences in Ambon, Indonesia is induced by heavy rainfall events where slope failures occur mostly on steep slopes thereby endangering municipality areas at the base of the hills. Eight landslide causative factors were considered in the landslide susceptibility assessments. The causative factors were elevation, slope angle, slope aspect, proximity to stream network, lithology, density of geological boundaries, proximity to faults, and proximity to the road network. The output susceptibility maps were reclassified into five classes ranging from very low to very high susceptibility using Jenks natural breaks method. Twenty percent of all mapped landslides were used as the validation of the susceptibility models. The validity and the accuracy of each model were tested by calculating areas under receiver operating characteristic curves (ROCs), and the areas under the curve (AUC) for the success rate curves of FR, LR, and ANN were 0.688, 0.687, and 0.734, respectively. The AUC for the prediction rate curve of FR, LR, and ANN were 0.668, 0.667, and 0.717, respectively. All findings of the models show good results with the accuracy of all models being higher than 66%. The ANN method proved to be superior in explaining the relationship of landslide with each factor studied.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
遥望星空完成签到,获得积分10
1秒前
2秒前
max完成签到 ,获得积分10
2秒前
3秒前
真ikun发布了新的文献求助30
4秒前
KBYer完成签到,获得积分10
5秒前
个性的平蓝完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
小蚂蚁森完成签到,获得积分10
7秒前
ccy发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
Lucas完成签到,获得积分10
8秒前
光之霓裳完成签到 ,获得积分10
8秒前
9秒前
吉吉国王完成签到 ,获得积分10
13秒前
PengqianGuo完成签到,获得积分10
14秒前
14秒前
FashionBoy应助ccy采纳,获得10
15秒前
善学以致用应助优秀采纳,获得10
15秒前
17秒前
18秒前
如意二娘完成签到 ,获得积分10
19秒前
19秒前
20秒前
20秒前
nipanpan完成签到,获得积分10
21秒前
woodenfish发布了新的文献求助10
21秒前
三途完成签到 ,获得积分10
21秒前
科研通AI6.1应助¥#¥-11采纳,获得10
22秒前
22秒前
22秒前
源正生物发布了新的文献求助10
23秒前
小兔子发布了新的文献求助10
24秒前
serenity发布了新的文献求助10
24秒前
孙明浩发布了新的文献求助10
26秒前
27秒前
28秒前
12完成签到 ,获得积分10
29秒前
30秒前
Hearing胡发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741705
求助须知:如何正确求助?哪些是违规求助? 5403758
关于积分的说明 15343201
捐赠科研通 4883272
什么是DOI,文献DOI怎么找? 2624986
邀请新用户注册赠送积分活动 1573801
关于科研通互助平台的介绍 1530722