Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia

山崩 逻辑回归 接收机工作特性 岩性 二元分析 地质学 仰角(弹道) 人工神经网络 多元统计 地貌学 统计 人工智能 几何学 数学 计算机科学 古生物学
作者
Aril Aditian,Tetsuya Kubota,Yoshinori Shinohara
出处
期刊:Geomorphology [Elsevier BV]
卷期号:318: 101-111 被引量:470
标识
DOI:10.1016/j.geomorph.2018.06.006
摘要

This study aims to evaluate landslide causative factors in landslide susceptibility assessments and to compare landslide susceptibility models based on the bivariate frequency ratio (FR), multivariate logistic regression (LR), and artificial neural network (ANN). The majority of landslide occurrences in Ambon, Indonesia is induced by heavy rainfall events where slope failures occur mostly on steep slopes thereby endangering municipality areas at the base of the hills. Eight landslide causative factors were considered in the landslide susceptibility assessments. The causative factors were elevation, slope angle, slope aspect, proximity to stream network, lithology, density of geological boundaries, proximity to faults, and proximity to the road network. The output susceptibility maps were reclassified into five classes ranging from very low to very high susceptibility using Jenks natural breaks method. Twenty percent of all mapped landslides were used as the validation of the susceptibility models. The validity and the accuracy of each model were tested by calculating areas under receiver operating characteristic curves (ROCs), and the areas under the curve (AUC) for the success rate curves of FR, LR, and ANN were 0.688, 0.687, and 0.734, respectively. The AUC for the prediction rate curve of FR, LR, and ANN were 0.668, 0.667, and 0.717, respectively. All findings of the models show good results with the accuracy of all models being higher than 66%. The ANN method proved to be superior in explaining the relationship of landslide with each factor studied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tracy.完成签到,获得积分10
刚刚
ohnono完成签到,获得积分10
1秒前
fanyueyue应助半胱氨酸采纳,获得10
2秒前
2秒前
晨珂完成签到,获得积分10
2秒前
Welcome发布了新的文献求助10
2秒前
黄桂斌应助坚定的雁菱采纳,获得10
2秒前
lf-leo完成签到,获得积分10
3秒前
yyy发布了新的文献求助10
3秒前
杜杜完成签到,获得积分10
4秒前
4秒前
lu应助默默的筝采纳,获得20
5秒前
SY完成签到,获得积分10
5秒前
OAHCIL完成签到 ,获得积分10
6秒前
青黄应助猪美丽采纳,获得10
6秒前
跳跃的惮完成签到,获得积分10
6秒前
冥冥之极为昭昭应助zhuang采纳,获得10
7秒前
快来吃甜瓜完成签到,获得积分10
8秒前
nuantong1shy完成签到,获得积分10
8秒前
lxy完成签到,获得积分10
8秒前
李健应助yu采纳,获得10
9秒前
琦琦国王完成签到,获得积分10
9秒前
易燃物品完成签到,获得积分10
9秒前
flac完成签到,获得积分10
11秒前
米奇的妙妙屋完成签到 ,获得积分10
11秒前
Mr_I完成签到,获得积分10
12秒前
BOSSJING完成签到,获得积分10
12秒前
liu完成签到,获得积分20
12秒前
majf发布了新的文献求助10
12秒前
mescal完成签到,获得积分10
12秒前
Welcome完成签到,获得积分10
13秒前
和和完成签到,获得积分10
14秒前
坚定青柏完成签到,获得积分10
15秒前
小灰灰完成签到 ,获得积分10
16秒前
RYAN完成签到 ,获得积分10
16秒前
秘小先儿应助海比天蓝采纳,获得10
17秒前
Zhusy完成签到 ,获得积分10
17秒前
17秒前
18秒前
自觉南风完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259