Deep learning based liver cancer detection using watershed transform and Gaussian mixture model techniques

人工智能 计算机科学 雅卡索引 肝癌 模式识别(心理学) 分割 人工神经网络 分类器(UML) 肝细胞癌 深度学习 医学 癌症研究
作者
Amita Das,U. Rajendra Acharya,Sucheta Panda,Sukanta Sabut
出处
期刊:Cognitive Systems Research [Elsevier]
卷期号:54: 165-175 被引量:112
标识
DOI:10.1016/j.cogsys.2018.12.009
摘要

Liver cancer is one of the leading cause of death in all over the world. Detecting the cancer tissue manually is a difficult task and time consuming. Hence, a computer-aided diagnosis (CAD) is used in decision making process for accurate detection for appropriate therapy. Therefore the main objective of this work is to detect the liver cancer accurately using automated method. In this work, we have proposed a new system called as watershed Gaussian based deep learning (WGDL) technique for effective delineate the cancer lesion in computed tomography (CT) images of the liver. A total of 225 images were used in this work to develop the proposed model. Initially, the liver was separated using marker controlled watershed segmentation process and finally the cancer affected lesion was segmented using the Gaussian mixture model (GMM) algorithm. After tumor segmentation, various texture features were extracted from the segmented region. These segmented features were fed to deep neural network (DNN) classifier for automated classification of three types of liver cancer i.e. hemangioma (HEM), hepatocellular carcinoma (HCC) and metastatic carcinoma (MET). We have achieved a classification accuracy of 99.38%, Jaccard index of 98.18%, at 200 epochs using DNN classifier with a negligible validation loss of 0.062 during the classification process. Our developed system is ready to be tested with huge database and can aid the radiologist in detecting the liver cancer using CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Serendipity完成签到,获得积分20
刚刚
刚刚
宝贝丫头完成签到 ,获得积分10
刚刚
My发布了新的文献求助10
1秒前
Wayne_Sun完成签到,获得积分10
1秒前
Diaory2023完成签到 ,获得积分0
1秒前
3秒前
Hello应助满意芯采纳,获得10
3秒前
4秒前
ding应助曾经二娘采纳,获得10
4秒前
你好发布了新的文献求助10
5秒前
竹筏过海应助李山鬼采纳,获得30
5秒前
酷波er应助李山鬼采纳,获得10
5秒前
123发布了新的文献求助10
6秒前
6秒前
7秒前
月亮完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
烟花应助sensensmart采纳,获得10
9秒前
阳阳完成签到,获得积分10
9秒前
9秒前
勇敢的心发布了新的文献求助10
9秒前
mmmm完成签到,获得积分10
9秒前
10秒前
赘婿应助胖心怡采纳,获得10
10秒前
11秒前
谦让月饼完成签到 ,获得积分10
11秒前
请叫我风吹麦浪应助盼盼采纳,获得10
11秒前
ZYQ关闭了ZYQ文献求助
12秒前
淡淡紫山发布了新的文献求助20
12秒前
pursuingx完成签到,获得积分10
14秒前
我是老大应助魔幻的忆秋采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
36456657应助科研通管家采纳,获得10
14秒前
sandy完成签到,获得积分10
14秒前
so000应助科研通管家采纳,获得10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461806
求助须知:如何正确求助?哪些是违规求助? 3055500
关于积分的说明 9048149
捐赠科研通 2745215
什么是DOI,文献DOI怎么找? 1506088
科研通“疑难数据库(出版商)”最低求助积分说明 695974
邀请新用户注册赠送积分活动 695472