Classification of Carotid Artery Intima Media Thickness Ultrasound Images with Deep Learning

内膜中层厚度 颈动脉 卷积神经网络 超声波 深度学习 医学 放射科 人工智能 人工神经网络 颈总动脉 模式识别(心理学) 机器学习 计算机科学 心脏病学
作者
Serkan Savaş,Nurettin Topaloğlu,Ömer Kazcı,Pınar Nercis Koşar
出处
期刊:Journal of Medical Systems [Springer Nature]
卷期号:43 (8) 被引量:43
标识
DOI:10.1007/s10916-019-1406-2
摘要

Cerebrovascular accident due to carotid artery disease is the most common cause of death in developed countries following heart disease and cancer. For a reliable early detection of atherosclerosis, Intima Media Thickness (IMT) measurement and classification are important. A new method for decision support purpose for the classification of IMT was proposed in this study. Ultrasound images are used for IMT measurements. Images are classified and evaluated by experts. This is a manual procedure, so it causes subjectivity and variability in the IMT classification. Instead, this article proposes a methodology based on artificial intelligence methods for IMT classification. For this purpose, a deep learning strategy with multiple hidden layers has been developed. In order to create the proposed model, convolutional neural network algorithm, which is frequently used in image classification problems, is used. 501 ultrasound images from 153 patients were used to test the model. The images are classified by two specialists, then the model is trained and tested on the images, and the results are explained. The deep learning model in the study achieved an accuracy of 89.1% in the IMT classification with 89% sensitivity and 88% specificity. Thus, the assessments in this paper have shown that this methodology performs reasonable results for IMT classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
aafrr完成签到 ,获得积分10
刚刚
深年完成签到,获得积分10
1秒前
DE2022发布了新的文献求助10
1秒前
花花发布了新的文献求助10
5秒前
5秒前
lorenz发布了新的文献求助30
10秒前
eee完成签到 ,获得积分10
10秒前
稳重元蝶发布了新的文献求助30
12秒前
13秒前
图图完成签到 ,获得积分10
13秒前
袁yuan完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
16秒前
16秒前
葛岸发布了新的文献求助10
17秒前
Hello应助他们叫我张国荣采纳,获得10
18秒前
jianghe597发布了新的文献求助10
20秒前
21秒前
Teen发布了新的文献求助10
21秒前
畅快的道之完成签到,获得积分10
21秒前
23秒前
袁yuan发布了新的文献求助20
24秒前
24秒前
28秒前
稳重元蝶完成签到,获得积分10
28秒前
调皮茗茗完成签到 ,获得积分10
29秒前
科研通AI2S应助yingw采纳,获得10
29秒前
31秒前
32秒前
33秒前
keep发布了新的文献求助10
33秒前
无花果应助ILBY采纳,获得10
33秒前
jqy发布了新的文献求助10
35秒前
赵勇发布了新的文献求助10
38秒前
56jhjl完成签到,获得积分10
39秒前
40秒前
9℃完成签到 ,获得积分10
42秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313559
求助须知:如何正确求助?哪些是违规求助? 2945879
关于积分的说明 8527489
捐赠科研通 2621538
什么是DOI,文献DOI怎么找? 1433778
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650637