Multikernel Capsule Network for Schizophrenia Identification

过度拟合 人工智能 计算机科学 模式识别(心理学) 人工神经网络 分类器(UML) 机器学习
作者
Tian Wang,Anastasios Bezerianos,Andrzej Cichocki,Junhua Li
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (6): 4741-4750 被引量:20
标识
DOI:10.1109/tcyb.2020.3035282
摘要

Schizophrenia seriously affects the quality of life. To date, both simple (e.g., linear discriminant analysis) and complex (e.g., deep neural network) machine-learning methods have been utilized to identify schizophrenia based on functional connectivity features. The existing simple methods need two separate steps (i.e., feature extraction and classification) to achieve the identification, which disables simultaneous tuning for the best feature extraction and classifier training. The complex methods integrate two steps and can be simultaneously tuned to achieve optimal performance, but these methods require a much larger amount of data for model training. To overcome the aforementioned drawbacks, we proposed a multikernel capsule network (MKCapsnet), which was developed by considering the brain anatomical structure. Kernels were set to match partition sizes of the brain anatomical structure in order to capture interregional connectivities at the varying scales. With the inspiration of the widely used dropout strategy in deep learning, we developed capsule dropout in the capsule layer to prevent overfitting of the model. The comparison results showed that the proposed method outperformed the state-of-the-art methods. Besides, we compared performances using different parameters and illustrated the routing process to reveal characteristics of the proposed method. MKCapsnet is promising for schizophrenia identification. Our study first utilized the capsule neural network for analyzing functional connectivity of magnetic resonance imaging (MRI) and proposed a novel multikernel capsule structure with the consideration of brain anatomical parcellation, which could be a new way to reveal brain mechanisms. In addition, we provided useful information in the parameter setting, which is informative for further studies using a capsule network for other neurophysiological signal classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山楂完成签到,获得积分10
1秒前
kkk556发布了新的文献求助10
2秒前
坦率含双完成签到,获得积分10
2秒前
3秒前
醉烟雨发布了新的文献求助20
3秒前
烦人精完成签到 ,获得积分10
4秒前
6秒前
Lucas应助huihui采纳,获得10
9秒前
小胭胭发布了新的文献求助10
11秒前
14秒前
16秒前
大狒狒完成签到,获得积分10
16秒前
123lx完成签到,获得积分20
17秒前
秋雅发布了新的文献求助10
18秒前
肉末茄子完成签到,获得积分10
18秒前
外向的惜珊完成签到,获得积分10
19秒前
lixy完成签到,获得积分10
19秒前
20秒前
小杨发布了新的文献求助20
20秒前
布鲁爱思完成签到,获得积分10
20秒前
21秒前
22秒前
美琦完成签到,获得积分10
23秒前
23秒前
美好芳发布了新的文献求助10
24秒前
华仔应助斯文雅旋采纳,获得10
26秒前
伟钧完成签到,获得积分10
26秒前
27秒前
souir发布了新的文献求助10
31秒前
32秒前
NexusExplorer应助科研通管家采纳,获得10
32秒前
酷波er应助科研通管家采纳,获得10
32秒前
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
33秒前
CipherSage应助科研通管家采纳,获得10
33秒前
今后应助科研通管家采纳,获得10
33秒前
orixero应助科研通管家采纳,获得50
33秒前
李健应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140482
求助须知:如何正确求助?哪些是违规求助? 2791338
关于积分的说明 7798605
捐赠科研通 2447661
什么是DOI,文献DOI怎么找? 1302020
科研通“疑难数据库(出版商)”最低求助积分说明 626402
版权声明 601194