Multikernel Capsule Network for Schizophrenia Identification

过度拟合 人工智能 计算机科学 模式识别(心理学) 人工神经网络 分类器(UML) 机器学习
作者
Tian Wang,Anastasios Bezerianos,Andrzej Cichocki,Junhua Li
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (6): 4741-4750 被引量:20
标识
DOI:10.1109/tcyb.2020.3035282
摘要

Schizophrenia seriously affects the quality of life. To date, both simple (e.g., linear discriminant analysis) and complex (e.g., deep neural network) machine-learning methods have been utilized to identify schizophrenia based on functional connectivity features. The existing simple methods need two separate steps (i.e., feature extraction and classification) to achieve the identification, which disables simultaneous tuning for the best feature extraction and classifier training. The complex methods integrate two steps and can be simultaneously tuned to achieve optimal performance, but these methods require a much larger amount of data for model training. To overcome the aforementioned drawbacks, we proposed a multikernel capsule network (MKCapsnet), which was developed by considering the brain anatomical structure. Kernels were set to match partition sizes of the brain anatomical structure in order to capture interregional connectivities at the varying scales. With the inspiration of the widely used dropout strategy in deep learning, we developed capsule dropout in the capsule layer to prevent overfitting of the model. The comparison results showed that the proposed method outperformed the state-of-the-art methods. Besides, we compared performances using different parameters and illustrated the routing process to reveal characteristics of the proposed method. MKCapsnet is promising for schizophrenia identification. Our study first utilized the capsule neural network for analyzing functional connectivity of magnetic resonance imaging (MRI) and proposed a novel multikernel capsule structure with the consideration of brain anatomical parcellation, which could be a new way to reveal brain mechanisms. In addition, we provided useful information in the parameter setting, which is informative for further studies using a capsule network for other neurophysiological signal classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷雅容完成签到,获得积分10
1秒前
2秒前
可爱香槟发布了新的文献求助20
4秒前
木木发布了新的文献求助10
4秒前
在水一方应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
袁睿韬应助科研通管家采纳,获得10
5秒前
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
5秒前
今后应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得50
5秒前
大脑袋应助科研通管家采纳,获得20
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
囡囝囿团发布了新的文献求助10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得20
6秒前
orixero应助科研通管家采纳,获得10
6秒前
大脑袋应助科研通管家采纳,获得30
6秒前
6秒前
6秒前
ED应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
Akim应助科研通管家采纳,获得30
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
冷酷的夜关注了科研通微信公众号
8秒前
626发布了新的文献求助10
8秒前
Res_M发布了新的文献求助10
9秒前
11秒前
娃哈哈发布了新的文献求助10
11秒前
12秒前
香蕉觅云应助Hannah采纳,获得10
15秒前
aaaaaa发布了新的文献求助10
16秒前
香蕉觅云应助001采纳,获得10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966742
求助须知:如何正确求助?哪些是违规求助? 3512237
关于积分的说明 11162366
捐赠科研通 3247107
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804432