硬脑膜
生物医学工程
材料科学
组织工程
膜
脑脊液
粘附
组织粘连
解剖
医学
病理
化学
复合材料
生物化学
作者
Fengbin Yu,Qiang Li,Shuo Yin,Xinyuan Liao,Fei Huang,Deyu Chen,Yilin Cao,Lian Cen
标识
DOI:10.1177/0885328215589205
摘要
Many neuro- and spinal surgeries involving access to the underlying nervous tissue will cause defect of spinal dural mater, further resulting in cerebrospinal fluid leakage. The current work was thus aimed to develop a package which included two layers of novel electrospun membranes, dermal fibroblasts and mussel adhesive protein for repairing spinal dural defect. The inner layer is electrospun fibrous poly(lactide-co-glycolide) membrane with oriented microstructure (O-poly(lactide-co-glycolide)), which was used as a substrate to anchor dermal fibroblasts as seed cells to reconstitute dura-like tissue via tissue engineering technique. The outer layer is chitosan-coated electrospun nonwoven poly(lactide-co-glycolide) membrane (poly(lactide-co-glycolide)-chitosan). During surgery, the inner reconstituted tissue layer was first used to directly cover dura defects, while the outer layer was placed onwards with its marginal area tightly immobilized to the surrounding normal spinal dura aided by mussel adhesive protein. Efficacy of the current design was verified in goats with spinal dural defects (0.6 cm × 0.5 cm) in lumbar. It was shown that seamless and quick sealing of the defect area with the implants was realized by mussel adhesive protein. Guided tissue growth and regeneration in the defects of goats were observed when they were repaired by the current package. Effective cerebrospinal fluid containment and anti-adhesion of the regenerated tissue to the surrounding tissue could be achieved in the current animal model. Hence, it could be ascertained that the current package could be a favorite choice for surgeries involving spinal dural defects.
科研通智能强力驱动
Strongly Powered by AbleSci AI