Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study

医学 结直肠癌 回顾性队列研究 新辅助治疗 放化疗 内科学 全直肠系膜切除术 放射科 前瞻性队列研究 肿瘤科 阶段(地层学) 活检 病态的 结肠镜检查 磁共振成像 卡培他滨 队列 放射治疗 列线图 完全响应 癌症 化疗 观察研究 一致性
作者
Lili Feng,Zhenyu Liu,Chaofeng Li,Zhenhui Li,Xiaoying Lou,Lizhi Shao,Yunlong Wang,Yan Huang,Haiyang Chen,Xiaolin Pang,Shuai Liu,Fang He,Jian Zheng,Xiaochun Meng,Peiyi Xie,Guanyu Yang,Yi Ding,Mingbiao Wei,Jingping Yun,Mien-Chie Hung,Weihua Zhou,Daniel R Wahl,Ping Lan,Jie Tian,Xiangbo Wan
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:4 (1): e8-e17 被引量:9
标识
DOI:10.1016/s2589-7500(21)00215-6
摘要

Accurate prediction of tumour response to neoadjuvant chemoradiotherapy enables personalised perioperative therapy for locally advanced rectal cancer. We aimed to develop and validate an artificial intelligence radiopathomics integrated model to predict pathological complete response in patients with locally advanced rectal cancer using pretreatment MRI and haematoxylin and eosin (H&E)-stained biopsy slides.In this multicentre observational study, eligible participants who had undergone neoadjuvant chemoradiotherapy followed by radical surgery were recruited, with their pretreatment pelvic MRI (T2-weighted imaging, contrast-enhanced T1-weighted imaging, and diffusion-weighted imaging) and whole slide images of H&E-stained biopsy sections collected for annotation and feature extraction. The RAdioPathomics Integrated preDiction System (RAPIDS) was constructed by machine learning on the basis of three feature sets associated with pathological complete response: radiomics MRI features, pathomics nucleus features, and pathomics microenvironment features from a retrospective training cohort. The accuracy of RAPIDS for the prediction of pathological complete response in locally advanced rectal cancer was verified in two retrospective external validation cohorts and further validated in a multicentre, prospective observational study (ClinicalTrials.gov, NCT04271657). Model performances were evaluated using area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).Between Sept 25, 2009, and Nov 3, 2017, 303 patients were retrospectively recruited in the training cohort, 480 in validation cohort 1, and 150 in validation cohort 2; 100 eligible patients were enrolled in the prospective study between Jan 10 and June 10, 2020. RAPIDS had favourable accuracy for the prediction of pathological complete response in the training cohort (AUC 0·868 [95% CI 0·825-0·912]), and in validation cohort 1 (0·860 [0·828-0·892]) and validation cohort 2 (0·872 [0·810-0·934]). In the prospective validation study, RAPIDS had an AUC of 0·812 (95% CI 0·717-0·907), sensitivity of 0·888 (0·728-0·999), specificity of 0·740 (0·593-0·886), NPV of 0·929 (0·862-0·995), and PPV of 0·512 (0·313-0·710). RAPIDS also significantly outperformed single-modality prediction models (AUC 0·630 [0·507-0·754] for the pathomics microenvironment model, 0·716 [0·580-0·852] for the radiomics MRI model, and 0·733 [0·620-0·845] for the pathomics nucleus model; all p<0·0001).RAPIDS was able to predict pathological complete response to neoadjuvant chemoradiotherapy based on pretreatment radiopathomics images with high accuracy and robustness and could therefore provide a novel tool to assist in individualised management of locally advanced rectal cancer.National Natural Science Foundation of China; Youth Innovation Promotion Association of the Chinese Academy of Sciences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cola应助prisfanstein采纳,获得30
刚刚
刚刚
sci来完成签到,获得积分10
刚刚
WJ完成签到,获得积分10
1秒前
???完成签到,获得积分10
1秒前
srf0602.发布了新的文献求助10
1秒前
123关闭了123文献求助
1秒前
1秒前
1秒前
1秒前
1秒前
小蘑菇应助jun_shen采纳,获得30
2秒前
内向映天完成签到 ,获得积分10
2秒前
2秒前
byd完成签到,获得积分10
3秒前
3秒前
脑洞疼应助DHY采纳,获得10
3秒前
kk发布了新的文献求助10
3秒前
NexusExplorer应助美味cookies采纳,获得10
4秒前
YY88687321发布了新的文献求助10
4秒前
Karlie发布了新的文献求助10
4秒前
4秒前
77发布了新的文献求助10
5秒前
兴奋电脑完成签到,获得积分10
5秒前
SCI论文获得者完成签到 ,获得积分20
5秒前
5秒前
es发布了新的文献求助10
6秒前
华猴猴完成签到,获得积分10
6秒前
传统的孤丝完成签到 ,获得积分10
6秒前
KOBEbeartwo发布了新的文献求助10
6秒前
Q甜完成签到,获得积分10
7秒前
7秒前
无妄生欢完成签到,获得积分10
8秒前
34101127完成签到,获得积分10
8秒前
Hello应助灰灰采纳,获得10
8秒前
JimeiLi发布了新的文献求助10
8秒前
Mira完成签到,获得积分10
9秒前
9秒前
菌菇完成签到,获得积分10
9秒前
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016703
求助须知:如何正确求助?哪些是违规求助? 3556823
关于积分的说明 11322708
捐赠科研通 3289505
什么是DOI,文献DOI怎么找? 1812495
邀请新用户注册赠送积分活动 888064
科研通“疑难数据库(出版商)”最低求助积分说明 812086