Deep learning model to quantify left atrium volume on routine non-contrast chest CT and predict adverse outcomes

医学 组内相关 逻辑回归 心房颤动 放射科 单变量分析 心脏病学 内科学 曲线下面积 肺癌 核医学 多元分析 临床心理学 心理测量学
作者
Gilberto J. Aquino,Jordan Chamberlin,Megan Mercer,Madison Kocher,Ismail Kabakus,Selçuk Akkaya,Matthew Fiegel,Sean Brady,Nathan Leaphart,Andrew Dippre,Vincent Giovagnoli,Basel Yacoub,Athira Jacob,Mehmet Gulsun,Pooyan Sahbaee,Puneet Sharma,Jeffrey Waltz,U. Joseph Schoepf,Dhiraj Baruah,Tilman Emrich,Stefan L. Zimmerman,Michael E. Field,Ali Agha,Jeremy R. Burt
出处
期刊:Journal of Cardiovascular Computed Tomography [Elsevier]
卷期号:16 (3): 245-253 被引量:9
标识
DOI:10.1016/j.jcct.2021.12.005
摘要

Low-dose computed tomography (LDCT) are performed routinely for lung cancer screening. However, a large amount of nonpulmonary data from these scans remains unassessed. We aimed to validate a deep learning model to automatically segment and measure left atrial (LA) volumes from routine NCCT and evaluate prediction of cardiovascular outcomes.We retrospectively evaluated 273 patients (median age 69 years, 55.5% male) who underwent LDCT for lung cancer screening. LA volumes were quantified by three expert cardiothoracic radiologists and a prototype AI algorithm. LA volumes were then indexed to the body surface area (BSA). Expert and AI LA volume index (LAVi) were compared and used to predict cardiovascular outcomes within five years. Logistic regression with appropriate univariate statistics were used for modelling outcomes.There was excellent correlation between AI and expert results with an LAV intraclass correlation of 0.950 (0.936-0.960). Bland-Altman plot demonstrated the AI underestimated LAVi by a mean 5.86 ​mL/m2. AI-LAVi was associated with new-onset atrial fibrillation (AUC 0.86; OR 1.12, 95% CI 1.08-1.18, p ​< ​0.001), HF hospitalization (AUC 0.90; OR 1.07, 95% CI 1.04-1.13, p ​< ​0.001), and MACCE (AUC 0.68; OR 1.04, 95% CI 1.01-1.07, p ​= ​0.01).This novel deep learning algorithm for automated measurement of LA volume on lung cancer screening scans had excellent agreement with manual quantification. AI-LAVi is significantly associated with increased risk of new-onset atrial fibrillation, HF hospitalization, and major adverse cardiac and cerebrovascular events within 5 years.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
manan发布了新的文献求助10
刚刚
亮亮关注了科研通微信公众号
刚刚
yuming完成签到,获得积分10
刚刚
1秒前
Curllen完成签到,获得积分10
1秒前
lzj001983发布了新的文献求助10
1秒前
1秒前
shouyu29应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
立波完成签到,获得积分10
2秒前
2秒前
科目三应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
shouyu29应助科研通管家采纳,获得10
3秒前
许win应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
4秒前
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
贪玩手链应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
嘎嘎顺利完成签到,获得积分10
4秒前
坤坤发布了新的文献求助10
5秒前
XXF发布了新的文献求助10
5秒前
wubobo完成签到,获得积分10
5秒前
6秒前
思源应助HopeStar采纳,获得10
6秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740