Deep learning model to quantify left atrium volume on routine non-contrast chest CT and predict adverse outcomes

医学 组内相关 逻辑回归 心房颤动 放射科 单变量分析 心脏病学 内科学 曲线下面积 肺癌 核医学 多元分析 临床心理学 心理测量学
作者
Gilberto J. Aquino,Jordan Chamberlin,Megan Mercer,Madison Kocher,Ismail Kabakus,Selçuk Akkaya,Matthew Fiegel,Sean Brady,Nathan Leaphart,Andrew Dippre,Vincent Giovagnoli,Basel Yacoub,Athira Jacob,Mehmet Gulsun,Pooyan Sahbaee,Puneet Sharma,Jeffrey Waltz,U. Joseph Schoepf,Dhiraj Baruah,Tilman Emrich,Stefan L. Zimmerman,Michael E. Field,Ali Agha,Jeremy R. Burt
出处
期刊:Journal of Cardiovascular Computed Tomography [Elsevier BV]
卷期号:16 (3): 245-253 被引量:9
标识
DOI:10.1016/j.jcct.2021.12.005
摘要

Low-dose computed tomography (LDCT) are performed routinely for lung cancer screening. However, a large amount of nonpulmonary data from these scans remains unassessed. We aimed to validate a deep learning model to automatically segment and measure left atrial (LA) volumes from routine NCCT and evaluate prediction of cardiovascular outcomes.We retrospectively evaluated 273 patients (median age 69 years, 55.5% male) who underwent LDCT for lung cancer screening. LA volumes were quantified by three expert cardiothoracic radiologists and a prototype AI algorithm. LA volumes were then indexed to the body surface area (BSA). Expert and AI LA volume index (LAVi) were compared and used to predict cardiovascular outcomes within five years. Logistic regression with appropriate univariate statistics were used for modelling outcomes.There was excellent correlation between AI and expert results with an LAV intraclass correlation of 0.950 (0.936-0.960). Bland-Altman plot demonstrated the AI underestimated LAVi by a mean 5.86 ​mL/m2. AI-LAVi was associated with new-onset atrial fibrillation (AUC 0.86; OR 1.12, 95% CI 1.08-1.18, p ​< ​0.001), HF hospitalization (AUC 0.90; OR 1.07, 95% CI 1.04-1.13, p ​< ​0.001), and MACCE (AUC 0.68; OR 1.04, 95% CI 1.01-1.07, p ​= ​0.01).This novel deep learning algorithm for automated measurement of LA volume on lung cancer screening scans had excellent agreement with manual quantification. AI-LAVi is significantly associated with increased risk of new-onset atrial fibrillation, HF hospitalization, and major adverse cardiac and cerebrovascular events within 5 years.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weiwei完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
niyaoganshenme完成签到,获得积分20
4秒前
柏忆南完成签到 ,获得积分10
5秒前
111完成签到 ,获得积分10
9秒前
hxpxp完成签到,获得积分10
10秒前
10秒前
愉快的犀牛完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
Ao_Jiang完成签到,获得积分10
14秒前
15秒前
大知闲闲完成签到 ,获得积分10
22秒前
开心的云完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助30
24秒前
打打应助我有一只猫采纳,获得10
24秒前
周常通完成签到,获得积分10
25秒前
朔方姑娘吧完成签到 ,获得积分10
32秒前
33秒前
天道酬勤完成签到,获得积分10
34秒前
35秒前
leena完成签到 ,获得积分10
40秒前
煲煲煲仔饭完成签到 ,获得积分10
42秒前
量子星尘发布了新的文献求助10
43秒前
zhang完成签到 ,获得积分10
43秒前
onevip完成签到,获得积分0
43秒前
dolabmu完成签到 ,获得积分10
44秒前
laber应助科研通管家采纳,获得50
47秒前
laber应助科研通管家采纳,获得50
47秒前
风清扬应助科研通管家采纳,获得150
47秒前
科研通AI5应助科研通管家采纳,获得10
47秒前
和平使命应助科研通管家采纳,获得10
47秒前
laber应助科研通管家采纳,获得50
47秒前
Akim应助科研通管家采纳,获得10
47秒前
科研通AI6应助科研通管家采纳,获得10
47秒前
47秒前
科研通AI6应助科研通管家采纳,获得10
47秒前
康谨完成签到 ,获得积分10
48秒前
Kiki完成签到 ,获得积分10
51秒前
量子星尘发布了新的文献求助10
54秒前
猴王完成签到,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093056
求助须知:如何正确求助?哪些是违规求助? 4306804
关于积分的说明 13417225
捐赠科研通 4132917
什么是DOI,文献DOI怎么找? 2264214
邀请新用户注册赠送积分活动 1267918
关于科研通互助平台的介绍 1203651