An Underground Abnormal Behavior Recognition Method Based on an Optimized Alphapose-ST-GCN

计算机科学 人工智能 趋同(经济学) 煤矿开采 集合(抽象数据类型) 模式识别(心理学) 图像(数学) 数据集 计算机视觉 工程类 经济增长 经济 程序设计语言 废物管理
作者
Xiaonan Shi,Jian Huang,Bo Huang
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
卷期号:31 (12) 被引量:6
标识
DOI:10.1142/s0218126622502140
摘要

Due to the complex underground environment of coal mines, the unsafe behaviors of miners are likely to lead safety accidents. Therefore, research on underground abnormal behavior recognition methods based on video images is gradually gaining attention. This paper proposes an underground abnormal behavior recognition method based on an optimized Alphapose-ST-GCN. First, an image set captured in underground monitoring video is defogged and enhanced by the CycleGAN. Second, the Alphapose target detection is optimized using the LTWOA-Tiny-YOLOv3 model. Third, the ST-GCN is used for abnormal behavior recognition. The image quality of the dataset before and after a CycleGAN enhancement is compared, the convergence curves of LTWOA under four test functions are compared, and the mean average accuracy mAP of the LTWOA-Tiny-YOLOv3 model is evaluated. Finally, the performance of the proposed method is compared with other detection algorithms. The results show that CycleGAN significantly improves the quality of the dataset images. The whale optimization algorithm improved by the logistic-tent chaos mapping has a more significant convergence effect than the other optimization algorithms, and the LTWOA-Tiny-YOLOv3 model has a better recognition accuracy of 9.1% in mAP compared with the unoptimized model. The underground abnormal detection model proposed in this paper achieves an 82.3% accuracy on the coal mine underground behavior dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
SHDeathlock发布了新的文献求助50
1秒前
乐乐应助hu970采纳,获得10
1秒前
单薄白薇完成签到,获得积分10
3秒前
陈杰发布了新的文献求助10
3秒前
3秒前
3秒前
小张张发布了新的文献求助10
3秒前
乐乐应助YAN采纳,获得10
4秒前
迷惘墨香完成签到 ,获得积分10
5秒前
5秒前
Cynthia发布了新的文献求助30
5秒前
共享精神应助shenyanlei采纳,获得10
6秒前
wwww发布了新的文献求助10
6秒前
蔡菜菜完成签到,获得积分10
7秒前
852应助小余采纳,获得10
7秒前
饱满秋完成签到,获得积分10
8秒前
夜白发布了新的文献求助20
8秒前
搜集达人应助明月清风采纳,获得10
8秒前
希夷发布了新的文献求助10
9秒前
9秒前
爆米花应助通~采纳,获得10
9秒前
苏靖完成签到,获得积分10
9秒前
luoyutian发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
科研通AI5应助猪猪采纳,获得10
10秒前
10秒前
海绵体宝宝应助an采纳,获得10
11秒前
wwww完成签到,获得积分10
11秒前
11秒前
桐桐应助柔弱凡松采纳,获得10
11秒前
爆米花应助丶呆久自然萌采纳,获得10
12秒前
12秒前
wanyanjin应助流云采纳,获得10
12秒前
心花怒放发布了新的文献求助10
13秒前
DrYang发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762