An Underground Abnormal Behavior Recognition Method Based on an Optimized Alphapose-ST-GCN

计算机科学 人工智能 趋同(经济学) 煤矿开采 集合(抽象数据类型) 模式识别(心理学) 图像(数学) 数据集 计算机视觉 工程类 经济增长 经济 程序设计语言 废物管理
作者
Xiaonan Shi,Jian Huang,Bo Huang
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
卷期号:31 (12) 被引量:6
标识
DOI:10.1142/s0218126622502140
摘要

Due to the complex underground environment of coal mines, the unsafe behaviors of miners are likely to lead safety accidents. Therefore, research on underground abnormal behavior recognition methods based on video images is gradually gaining attention. This paper proposes an underground abnormal behavior recognition method based on an optimized Alphapose-ST-GCN. First, an image set captured in underground monitoring video is defogged and enhanced by the CycleGAN. Second, the Alphapose target detection is optimized using the LTWOA-Tiny-YOLOv3 model. Third, the ST-GCN is used for abnormal behavior recognition. The image quality of the dataset before and after a CycleGAN enhancement is compared, the convergence curves of LTWOA under four test functions are compared, and the mean average accuracy mAP of the LTWOA-Tiny-YOLOv3 model is evaluated. Finally, the performance of the proposed method is compared with other detection algorithms. The results show that CycleGAN significantly improves the quality of the dataset images. The whale optimization algorithm improved by the logistic-tent chaos mapping has a more significant convergence effect than the other optimization algorithms, and the LTWOA-Tiny-YOLOv3 model has a better recognition accuracy of 9.1% in mAP compared with the unoptimized model. The underground abnormal detection model proposed in this paper achieves an 82.3% accuracy on the coal mine underground behavior dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助科研通管家采纳,获得10
刚刚
dypdyp应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得30
刚刚
华仔应助科研通管家采纳,获得10
刚刚
大脑袋应助科研通管家采纳,获得20
刚刚
刚刚
刚刚
刚刚
香蕉书琴完成签到,获得积分10
1秒前
linkoop发布了新的文献求助10
1秒前
1秒前
Neon完成签到,获得积分10
2秒前
3秒前
香蕉书琴发布了新的文献求助10
5秒前
qq完成签到,获得积分10
5秒前
7秒前
8秒前
9秒前
笨笨过客完成签到,获得积分10
10秒前
慕青应助Okayoooooo采纳,获得10
10秒前
10秒前
zjz发布了新的文献求助20
14秒前
合适台灯发布了新的文献求助10
15秒前
小白发布了新的文献求助200
16秒前
今后应助baby3480采纳,获得10
16秒前
情怀应助小眼儿采纳,获得10
17秒前
18秒前
damnxas完成签到,获得积分10
20秒前
21秒前
桐桐应助热心小松鼠采纳,获得10
22秒前
Hello应助热心小松鼠采纳,获得10
22秒前
Ava应助热心小松鼠采纳,获得10
22秒前
科目三应助热心小松鼠采纳,获得10
22秒前
Owen应助热心小松鼠采纳,获得10
22秒前
丘比特应助热心小松鼠采纳,获得10
22秒前
情怀应助热心小松鼠采纳,获得10
22秒前
小蘑菇应助热心小松鼠采纳,获得10
22秒前
深情安青应助热心小松鼠采纳,获得10
22秒前
科目三应助ysy采纳,获得10
22秒前
思源应助热心小松鼠采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966742
求助须知:如何正确求助?哪些是违规求助? 3512237
关于积分的说明 11162366
捐赠科研通 3247107
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804432