Enhancing high-temperature capacitor performance of polymer nanocomposites by adjusting the energy level structure in the micro-/meso-scopic interface region

材料科学 纳米复合材料 电介质 复合材料 聚合物纳米复合材料 氧化物 肖特基势垒 电极 介电强度 聚合物 石墨烯 纳米技术 带隙 光电子学 二极管 物理化学 化学 冶金
作者
Jiufeng Dong,Renchao Hu,Yujuan Niu,Liang Sun,Liuting Li,Shuai Li,Desheng Pan,Xinwei Xu,Rui Gong,Jin Cheng,Zizhao Pan,Qing Wang,Hong Wang
出处
期刊:Nano Energy [Elsevier]
卷期号:99: 107314-107314 被引量:75
标识
DOI:10.1016/j.nanoen.2022.107314
摘要

The interface plays a major role in the conduction and breakdown behaviors of dielectric materials. Enhancing interface compatibility and Schottky barrier to reduce conduction loss and enhance breakdown strength of nanocomposites has been widely studied. Nevertheless, there are few reports on the effect of the energy level structure in filler/polymer and electrode/dielectric interface region on the breakdown strength and high-temperature energy storage performances. Herein, the polyimide (PI) films sandwiched by Al 2 O 3 layers and filled with SiO 2 shell-coated high- K BaTiO 3 nanofibers were prepared. Our results reveal that the wide bandgap oxide layer can regulate the energy level structure of the interface region, introduce deep traps in the nanocomposites and increase the Schottky barrier at the electrode/dielectric interface to impede charge injection and transport. Moreover, the nanocomposites combine the advantages of anisotropic dielectric properties from the Al 2 O 3 layer, SiO 2 shell, and BaTiO 3 core, enhancing dielectric constants of the nanocomposites. The optimal nanocomposites show greatly enhanced discharge energy density and breakdown strength at 150 °C, which are 370% and 38% higher than those of PI, respectively. This work provides more insight into the mechanism of electrical conduction and breakdown in polymer nanocomposites and offers an effective strategy for developing polymer nanocomposites with superior capacitive performance at elevated temperatures. A novel polymer nanocomposite sandwiched by wide bandgap oxide layer and filled with high- K BaTiO 3 nanofibers coated with a wide bandgap oxide shell is reported. The trap energy level and interface Schottky barrier were greatly improved by adjusting the band structure in the micro-/meso-scopic interface region of the nanocomposites, yielding concurrent enhancements in both dielectric constant and breakdown strength at elevated temperatures. • Preparing a novel high- K nanocomposites with multi-scale interfaces. • Overcoming the negative correlation between K and E b of nanocomposites. • Revealing the band structure effect of interface region on the dielectric properties. • The U e of the optimal nanocomposites is kept at 1.75 J cm −3 with η > 90% at 200 °C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Owen应助petli采纳,获得10
3秒前
3秒前
SciGPT应助lch采纳,获得10
3秒前
斯文雪青完成签到,获得积分10
4秒前
独特惋清完成签到,获得积分10
4秒前
hustzp发布了新的文献求助10
4秒前
5秒前
xiaoGuo应助太渊采纳,获得10
6秒前
李爱国应助菘蓝泽蓼采纳,获得30
8秒前
YZJing完成签到,获得积分10
9秒前
DOCTORLI完成签到,获得积分20
9秒前
Singularity应助fyl采纳,获得10
9秒前
10秒前
SciGPT应助11采纳,获得10
11秒前
CodeCraft应助景飞丹采纳,获得10
11秒前
ding应助谦让的小姜采纳,获得10
11秒前
11秒前
张瑞雪发布了新的文献求助10
11秒前
科目三应助电催化丁真采纳,获得30
12秒前
科研通AI2S应助顺毕采纳,获得10
13秒前
拾贰月发布了新的文献求助10
13秒前
嵇冷雪发布了新的文献求助10
14秒前
搜集达人应助枝桠采纳,获得10
15秒前
思源应助雯雯子采纳,获得10
15秒前
斯文飞槐完成签到,获得积分10
16秒前
hustzp完成签到,获得积分10
18秒前
21秒前
xxx关注了科研通微信公众号
21秒前
现实的向梦完成签到 ,获得积分10
22秒前
闪闪的鹏博完成签到,获得积分10
22秒前
嵇冷雪完成签到,获得积分10
23秒前
雯雯子完成签到,获得积分10
24秒前
咱不吃葱完成签到,获得积分10
25秒前
27秒前
雯雯子发布了新的文献求助10
28秒前
赘婿应助谦让的小姜采纳,获得10
28秒前
大个应助木子niko采纳,获得10
28秒前
LIKO发布了新的文献求助20
31秒前
31秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138252
求助须知:如何正确求助?哪些是违规求助? 2789208
关于积分的说明 7790538
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300565
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601053