亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reservoir facies classification based on random forest and geostatistics methods in an offshore oilfield

地质统计学 地质学 储层建模 岩石物理学 变异函数 克里金 海底管道 碳酸盐 算法 岩石学 石油工程 机器学习 地貌学 岩土工程 计算机科学 统计 空间变异性 数学 构造盆地 多孔性 材料科学 冶金
作者
Mehran Rahimi,Mohammad Ali Riahi
出处
期刊:Journal of Applied Geophysics [Elsevier]
卷期号:201: 104640-104640 被引量:27
标识
DOI:10.1016/j.jappgeo.2022.104640
摘要

Machine learning methods are increasingly employed in various seismic and petrophysical methods for parameter estimation, interpretation, prediction, and classification. Reservoir facies classification assists the interpretation of seismic data as an important step in petroleum exploration and production monitoring. In this study, we estimate a reservoir facies model by integrating random forest (RF) algorithms and geostatistics modeling. The Surmeh Formation with the Jurassic age is known as one of the most important hydrocarbon reservoirs in the Middle East. The upper part of the Surmeh Formation is equivalent to the Arab Formation, which includes sequences of evaporitic carbonate facies in the study area. Well log data including DT, GR, RHOB, and PHI are used in the RF method for reservoir facies classification. Cross-validation verifies the high accuracy of our classification, with an average accuracy of 95%. The predicted reservoir facies consistently describe the carbonate and evaporitic facies with the geological information of this formation. The decision tree diagrams of the RF algorithm give valuable information on decision limitations and how to select features for efficient computation. We use the classification results for facies modeling. The comparison between facies models and drilling core data shows that the APE value of the sequential indicator simulation model is less than that of the indicator kriging model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
量子星尘发布了新的文献求助10
13秒前
gxx发布了新的文献求助10
15秒前
惠须一饮三杯杯完成签到,获得积分10
17秒前
冷静的振家完成签到,获得积分10
17秒前
19秒前
20秒前
25秒前
26秒前
wsj发布了新的文献求助10
29秒前
Ava应助骨科小李采纳,获得10
30秒前
31秒前
浪里白条发布了新的文献求助10
32秒前
别看了发布了新的文献求助10
35秒前
斯文败类应助wsj采纳,获得10
37秒前
小蘑菇应助gxx采纳,获得10
43秒前
哲别发布了新的文献求助10
53秒前
Hello应助浪里白条采纳,获得10
57秒前
freshfire完成签到,获得积分20
57秒前
HtheJ完成签到,获得积分10
57秒前
dimples完成签到 ,获得积分10
1分钟前
英俊的铭应助Re采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
小蘑菇应助小废物采纳,获得20
1分钟前
骨科小李发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Re发布了新的文献求助10
2分钟前
杨江华完成签到,获得积分10
2分钟前
科研大王完成签到,获得积分10
2分钟前
明亮的老四完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
小废物发布了新的文献求助20
2分钟前
nazhang发布了新的文献求助10
2分钟前
浪里白条发布了新的文献求助10
2分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644576
求助须知:如何正确求助?哪些是违规求助? 4764521
关于积分的说明 15025286
捐赠科研通 4802940
什么是DOI,文献DOI怎么找? 2567735
邀请新用户注册赠送积分活动 1525391
关于科研通互助平台的介绍 1484876