Multi-layer perceptron classification method of medical data based on biogeography-based optimization algorithm with probability distributions

计算机科学 算法 感知器 概率分布 伽马分布 人工神经网络 人工智能 模式识别(心理学) 机器学习 数学 统计
作者
Xudong Li,Jie-Sheng Wang,Wen-Kuo Hao,Min Wang,Min Zhang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:121: 108766-108766 被引量:12
标识
DOI:10.1016/j.asoc.2022.108766
摘要

In the field of medical informatics, the accuracy of medical data classification plays a vital role. Multi-layer Perceptron (MLP), as one of the most widely used neural networks, has been widely used in the medical fields. In recent years, the Biogeography-based Optimization (BBO) algorithm has been proposed to train MLP, but the original algorithm often encounters local minimums, slow convergence, and sensitivity to initialized values during the optimization process. To this end, this paper adopted the different probability distributions to improve the BBO (PD-BBO) algorithm to train MLP so as to improve medical data classification accuracy. These distributions include Gamma distribution, Beta distribution, Gaussian distribution, Exponential distribution, Poisson distribution, Geometric distribution, Rayleigh distribution and Weber distribution Then these different probability distributions were embed into the migration process of the BBO algorithm to replace the random distribution and the migration probability was defined. Finally, simulation experiments were carried out, and the benchmark function was used to prove the effectiveness of the proposed algorithms. And then it was used to train a multi-layer perceptron, and five medical data sets were selected for classification. After that, the performance of the standard BBO algorithm and five typical meta-heuristic algorithms were compared. The results showed that the PD-BBO algorithms to train MLP was better than the BBO algorithm and the selected meta-heuristic algorithms, and the classification accuracy has been improved to a certain extent.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yee发布了新的文献求助30
1秒前
科目三应助cc66采纳,获得10
2秒前
lm发布了新的文献求助10
2秒前
LPH01发布了新的文献求助10
2秒前
大胆诗云发布了新的文献求助10
2秒前
无极微光应助张雯雯采纳,获得20
3秒前
南风南下发布了新的文献求助10
3秒前
3秒前
4秒前
循循完成签到,获得积分10
4秒前
4秒前
共享精神应助忧虑的安青采纳,获得10
5秒前
5秒前
打打应助Yanhai采纳,获得10
5秒前
英俊的铭应助111采纳,获得10
5秒前
CCD完成签到,获得积分10
6秒前
6秒前
8秒前
恩善发布了新的文献求助10
9秒前
Wei完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
深情安青应助南风南下采纳,获得200
11秒前
LPH01完成签到,获得积分10
11秒前
慈祥的夏岚完成签到,获得积分10
11秒前
yizhimcfu发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
ilyaxxx发布了新的文献求助10
12秒前
隋黎完成签到 ,获得积分10
14秒前
我我我发布了新的文献求助10
15秒前
朴素的玫瑰完成签到,获得积分20
15秒前
xxfsx应助郭郭盖过采纳,获得20
15秒前
16秒前
小盆呐发布了新的文献求助10
16秒前
16秒前
饱满丹琴发布了新的文献求助20
17秒前
lonelymusic完成签到,获得积分10
17秒前
木通完成签到,获得积分10
17秒前
奕柯完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513523
求助须知:如何正确求助?哪些是违规求助? 4607732
关于积分的说明 14506652
捐赠科研通 4543272
什么是DOI,文献DOI怎么找? 2489491
邀请新用户注册赠送积分活动 1471450
关于科研通互助平台的介绍 1443447