Multi-layer perceptron classification method of medical data based on biogeography-based optimization algorithm with probability distributions

计算机科学 算法 感知器 概率分布 伽马分布 人工神经网络 人工智能 模式识别(心理学) 机器学习 数学 统计
作者
Xudong Li,Jie-Sheng Wang,Wen-Kuo Hao,Min Wang,Min Zhang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:121: 108766-108766 被引量:12
标识
DOI:10.1016/j.asoc.2022.108766
摘要

In the field of medical informatics, the accuracy of medical data classification plays a vital role. Multi-layer Perceptron (MLP), as one of the most widely used neural networks, has been widely used in the medical fields. In recent years, the Biogeography-based Optimization (BBO) algorithm has been proposed to train MLP, but the original algorithm often encounters local minimums, slow convergence, and sensitivity to initialized values during the optimization process. To this end, this paper adopted the different probability distributions to improve the BBO (PD-BBO) algorithm to train MLP so as to improve medical data classification accuracy. These distributions include Gamma distribution, Beta distribution, Gaussian distribution, Exponential distribution, Poisson distribution, Geometric distribution, Rayleigh distribution and Weber distribution Then these different probability distributions were embed into the migration process of the BBO algorithm to replace the random distribution and the migration probability was defined. Finally, simulation experiments were carried out, and the benchmark function was used to prove the effectiveness of the proposed algorithms. And then it was used to train a multi-layer perceptron, and five medical data sets were selected for classification. After that, the performance of the standard BBO algorithm and five typical meta-heuristic algorithms were compared. The results showed that the PD-BBO algorithms to train MLP was better than the BBO algorithm and the selected meta-heuristic algorithms, and the classification accuracy has been improved to a certain extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eghiefefe发布了新的文献求助10
刚刚
hehe完成签到 ,获得积分10
刚刚
哈哈是你发布了新的文献求助10
刚刚
刚刚
tx完成签到 ,获得积分20
刚刚
1秒前
海棠听风发布了新的文献求助10
1秒前
2秒前
lucky发布了新的文献求助10
2秒前
MARY发布了新的文献求助10
2秒前
caijinwang完成签到,获得积分20
3秒前
独步天下完成签到,获得积分10
3秒前
斯文败类应助Blank采纳,获得10
3秒前
PHI关闭了PHI文献求助
3秒前
香蕉觅云应助叶成会采纳,获得10
3秒前
完美世界应助一二三四五采纳,获得10
3秒前
邴捷完成签到,获得积分10
3秒前
lll完成签到,获得积分10
3秒前
系统提示完成签到,获得积分10
3秒前
Zx_1993应助龙藏在云里采纳,获得10
3秒前
3秒前
Paranoid发布了新的文献求助10
3秒前
化学小白发布了新的文献求助10
3秒前
4秒前
虚拟的含灵完成签到,获得积分10
4秒前
晚安完成签到 ,获得积分10
5秒前
li关闭了li文献求助
5秒前
kqd发布了新的文献求助10
5秒前
5秒前
Alex发布了新的文献求助10
5秒前
ZWL发布了新的文献求助10
6秒前
加百莉发布了新的文献求助10
6秒前
斯文败类应助快乐友灵采纳,获得10
6秒前
慕辰完成签到,获得积分10
7秒前
7秒前
研友_8o5V2n发布了新的文献求助10
7秒前
7秒前
7秒前
大胆老三应助加菲丰丰采纳,获得10
8秒前
Vital完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5479337
求助须知:如何正确求助?哪些是违规求助? 4580925
关于积分的说明 14377452
捐赠科研通 4509459
什么是DOI,文献DOI怎么找? 2471322
邀请新用户注册赠送积分活动 1457836
关于科研通互助平台的介绍 1431668