亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-layer perceptron classification method of medical data based on biogeography-based optimization algorithm with probability distributions

计算机科学 算法 感知器 概率分布 伽马分布 人工神经网络 人工智能 模式识别(心理学) 机器学习 数学 统计
作者
Xudong Li,Jie-Sheng Wang,Wen-Kuo Hao,Min Wang,Min Zhang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:121: 108766-108766 被引量:12
标识
DOI:10.1016/j.asoc.2022.108766
摘要

In the field of medical informatics, the accuracy of medical data classification plays a vital role. Multi-layer Perceptron (MLP), as one of the most widely used neural networks, has been widely used in the medical fields. In recent years, the Biogeography-based Optimization (BBO) algorithm has been proposed to train MLP, but the original algorithm often encounters local minimums, slow convergence, and sensitivity to initialized values during the optimization process. To this end, this paper adopted the different probability distributions to improve the BBO (PD-BBO) algorithm to train MLP so as to improve medical data classification accuracy. These distributions include Gamma distribution, Beta distribution, Gaussian distribution, Exponential distribution, Poisson distribution, Geometric distribution, Rayleigh distribution and Weber distribution Then these different probability distributions were embed into the migration process of the BBO algorithm to replace the random distribution and the migration probability was defined. Finally, simulation experiments were carried out, and the benchmark function was used to prove the effectiveness of the proposed algorithms. And then it was used to train a multi-layer perceptron, and five medical data sets were selected for classification. After that, the performance of the standard BBO algorithm and five typical meta-heuristic algorithms were compared. The results showed that the PD-BBO algorithms to train MLP was better than the BBO algorithm and the selected meta-heuristic algorithms, and the classification accuracy has been improved to a certain extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助studi采纳,获得10
1秒前
3秒前
RONG完成签到 ,获得积分10
5秒前
斯文败类应助dfwm采纳,获得10
11秒前
英姑应助白茶泡泡球采纳,获得10
11秒前
漂亮的寄真完成签到,获得积分10
12秒前
12秒前
17秒前
studi发布了新的文献求助10
19秒前
23秒前
大zeizei发布了新的文献求助10
23秒前
科研通AI6应助谨慎的雨梅采纳,获得30
24秒前
文静的可仁完成签到,获得积分10
27秒前
bobo发布了新的文献求助10
29秒前
康谨完成签到 ,获得积分10
33秒前
潘啊潘完成签到 ,获得积分10
35秒前
香蕉觅云应助sun采纳,获得10
36秒前
爆米花应助haaa采纳,获得10
44秒前
45秒前
研友_VZG7GZ应助studi采纳,获得10
51秒前
51秒前
53秒前
852应助科研通管家采纳,获得10
53秒前
充电宝应助科研通管家采纳,获得10
53秒前
wxyshare应助科研通管家采纳,获得10
53秒前
FashionBoy应助科研通管家采纳,获得10
53秒前
慕青应助科研通管家采纳,获得10
53秒前
浮游应助科研通管家采纳,获得10
53秒前
CodeCraft应助科研通管家采纳,获得10
53秒前
56秒前
oxs完成签到 ,获得积分10
57秒前
57秒前
1分钟前
1分钟前
田様应助sun采纳,获得10
1分钟前
今后应助bobo采纳,获得30
1分钟前
Jasper应助白茶泡泡球采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
mls完成签到,获得积分10
1分钟前
大力尔云完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952250
求助须知:如何正确求助?哪些是违规求助? 4215025
关于积分的说明 13110758
捐赠科研通 3996866
什么是DOI,文献DOI怎么找? 2187672
邀请新用户注册赠送积分活动 1202932
关于科研通互助平台的介绍 1115710