已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-layer perceptron classification method of medical data based on biogeography-based optimization algorithm with probability distributions

计算机科学 算法 感知器 概率分布 伽马分布 人工神经网络 人工智能 模式识别(心理学) 机器学习 数学 统计
作者
Xudong Li,Jie-Sheng Wang,Wen-Kuo Hao,Min Wang,Min Zhang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:121: 108766-108766 被引量:12
标识
DOI:10.1016/j.asoc.2022.108766
摘要

In the field of medical informatics, the accuracy of medical data classification plays a vital role. Multi-layer Perceptron (MLP), as one of the most widely used neural networks, has been widely used in the medical fields. In recent years, the Biogeography-based Optimization (BBO) algorithm has been proposed to train MLP, but the original algorithm often encounters local minimums, slow convergence, and sensitivity to initialized values during the optimization process. To this end, this paper adopted the different probability distributions to improve the BBO (PD-BBO) algorithm to train MLP so as to improve medical data classification accuracy. These distributions include Gamma distribution, Beta distribution, Gaussian distribution, Exponential distribution, Poisson distribution, Geometric distribution, Rayleigh distribution and Weber distribution Then these different probability distributions were embed into the migration process of the BBO algorithm to replace the random distribution and the migration probability was defined. Finally, simulation experiments were carried out, and the benchmark function was used to prove the effectiveness of the proposed algorithms. And then it was used to train a multi-layer perceptron, and five medical data sets were selected for classification. After that, the performance of the standard BBO algorithm and five typical meta-heuristic algorithms were compared. The results showed that the PD-BBO algorithms to train MLP was better than the BBO algorithm and the selected meta-heuristic algorithms, and the classification accuracy has been improved to a certain extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
君仔完成签到,获得积分10
1秒前
3秒前
5秒前
小丸子完成签到,获得积分10
5秒前
Owen应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
7秒前
魁梧的傲芙完成签到,获得积分10
9秒前
10秒前
云初完成签到,获得积分10
10秒前
hahaha完成签到 ,获得积分10
10秒前
10秒前
10秒前
12秒前
欣喜的诗筠完成签到 ,获得积分10
13秒前
Omni完成签到,获得积分10
13秒前
子陇完成签到,获得积分10
14秒前
15秒前
LTJ完成签到,获得积分10
15秒前
又声完成签到,获得积分10
18秒前
18秒前
Yxxx完成签到 ,获得积分10
19秒前
酷波er应助秀儿采纳,获得10
20秒前
故意不上钩的鱼应助Omni采纳,获得10
20秒前
22秒前
隐形曼青应助魔幻的外套采纳,获得10
24秒前
充电宝应助yyyyyzy采纳,获得10
26秒前
弈天完成签到 ,获得积分10
26秒前
芝士奶盖有点咸完成签到 ,获得积分10
27秒前
成就书雪完成签到,获得积分10
28秒前
你好完成签到 ,获得积分0
29秒前
spring完成签到,获得积分10
32秒前
32秒前
sweet完成签到 ,获得积分10
32秒前
32秒前
小呆完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290873
求助须知:如何正确求助?哪些是违规求助? 4442088
关于积分的说明 13829259
捐赠科研通 4324915
什么是DOI,文献DOI怎么找? 2373887
邀请新用户注册赠送积分活动 1369281
关于科研通互助平台的介绍 1333356