Multi-layer perceptron classification method of medical data based on biogeography-based optimization algorithm with probability distributions

计算机科学 算法 感知器 概率分布 伽马分布 人工神经网络 人工智能 模式识别(心理学) 机器学习 数学 统计
作者
Xudong Li,Jie-Sheng Wang,Wen-Kuo Hao,Min Wang,Min Zhang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:121: 108766-108766 被引量:12
标识
DOI:10.1016/j.asoc.2022.108766
摘要

In the field of medical informatics, the accuracy of medical data classification plays a vital role. Multi-layer Perceptron (MLP), as one of the most widely used neural networks, has been widely used in the medical fields. In recent years, the Biogeography-based Optimization (BBO) algorithm has been proposed to train MLP, but the original algorithm often encounters local minimums, slow convergence, and sensitivity to initialized values during the optimization process. To this end, this paper adopted the different probability distributions to improve the BBO (PD-BBO) algorithm to train MLP so as to improve medical data classification accuracy. These distributions include Gamma distribution, Beta distribution, Gaussian distribution, Exponential distribution, Poisson distribution, Geometric distribution, Rayleigh distribution and Weber distribution Then these different probability distributions were embed into the migration process of the BBO algorithm to replace the random distribution and the migration probability was defined. Finally, simulation experiments were carried out, and the benchmark function was used to prove the effectiveness of the proposed algorithms. And then it was used to train a multi-layer perceptron, and five medical data sets were selected for classification. After that, the performance of the standard BBO algorithm and five typical meta-heuristic algorithms were compared. The results showed that the PD-BBO algorithms to train MLP was better than the BBO algorithm and the selected meta-heuristic algorithms, and the classification accuracy has been improved to a certain extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lin完成签到,获得积分20
1秒前
思源应助科研民工采纳,获得10
1秒前
忧郁凌波完成签到,获得积分10
1秒前
姜姜姜完成签到 ,获得积分10
2秒前
凶狠的绿兰完成签到,获得积分10
3秒前
多多少少忖测的情完成签到,获得积分10
3秒前
科研通AI5应助兴奋的宛白采纳,获得10
4秒前
5秒前
zhanlonglsj发布了新的文献求助10
5秒前
5秒前
芍药完成签到,获得积分10
5秒前
Yogita完成签到,获得积分10
6秒前
DoctorYan完成签到,获得积分10
6秒前
Adler完成签到,获得积分10
6秒前
7秒前
坐宝马吃地瓜完成签到 ,获得积分10
7秒前
SciGPT应助Strike采纳,获得10
7秒前
自强不息完成签到,获得积分10
7秒前
8秒前
czq发布了新的文献求助30
8秒前
望春风完成签到,获得积分10
8秒前
8秒前
huangJP完成签到,获得积分10
9秒前
情怀应助Tira采纳,获得10
9秒前
王阳洋完成签到,获得积分10
9秒前
9秒前
10秒前
通~发布了新的文献求助10
10秒前
李爱国应助非常可爱采纳,获得20
10秒前
10秒前
11秒前
阿敏发布了新的文献求助10
12秒前
JamesPei应助小憩采纳,获得10
12秒前
jkhjkhj发布了新的文献求助10
12秒前
风中香之发布了新的文献求助30
12秒前
忍冬完成签到,获得积分10
13秒前
Zhong发布了新的文献求助10
14秒前
胡图图关注了科研通微信公众号
14秒前
爱吃泡芙发布了新的文献求助20
14秒前
xiuxiu_27发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740