Multi-layer perceptron classification method of medical data based on biogeography-based optimization algorithm with probability distributions

计算机科学 算法 感知器 概率分布 伽马分布 人工神经网络 人工智能 模式识别(心理学) 机器学习 数学 统计
作者
Xudong Li,Jie-Sheng Wang,Wen-Kuo Hao,Min Wang,Min Zhang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:121: 108766-108766 被引量:12
标识
DOI:10.1016/j.asoc.2022.108766
摘要

In the field of medical informatics, the accuracy of medical data classification plays a vital role. Multi-layer Perceptron (MLP), as one of the most widely used neural networks, has been widely used in the medical fields. In recent years, the Biogeography-based Optimization (BBO) algorithm has been proposed to train MLP, but the original algorithm often encounters local minimums, slow convergence, and sensitivity to initialized values during the optimization process. To this end, this paper adopted the different probability distributions to improve the BBO (PD-BBO) algorithm to train MLP so as to improve medical data classification accuracy. These distributions include Gamma distribution, Beta distribution, Gaussian distribution, Exponential distribution, Poisson distribution, Geometric distribution, Rayleigh distribution and Weber distribution Then these different probability distributions were embed into the migration process of the BBO algorithm to replace the random distribution and the migration probability was defined. Finally, simulation experiments were carried out, and the benchmark function was used to prove the effectiveness of the proposed algorithms. And then it was used to train a multi-layer perceptron, and five medical data sets were selected for classification. After that, the performance of the standard BBO algorithm and five typical meta-heuristic algorithms were compared. The results showed that the PD-BBO algorithms to train MLP was better than the BBO algorithm and the selected meta-heuristic algorithms, and the classification accuracy has been improved to a certain extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助超级白开水采纳,获得20
刚刚
无辜善愁发布了新的文献求助10
2秒前
怕黑匕完成签到 ,获得积分10
3秒前
夹心完成签到,获得积分10
3秒前
3秒前
zxy发布了新的文献求助10
3秒前
boya完成签到,获得积分10
3秒前
三三完成签到,获得积分10
4秒前
搜集达人应助桑葚啊采纳,获得10
5秒前
FartKing发布了新的文献求助30
5秒前
chem is try完成签到,获得积分10
5秒前
123应助wyx采纳,获得10
7秒前
7秒前
7秒前
xxx发布了新的文献求助10
8秒前
8秒前
小洪包完成签到,获得积分10
10秒前
11秒前
12秒前
evvj发布了新的文献求助10
12秒前
14秒前
宜醉宜游宜睡应助锅包肉采纳,获得10
15秒前
Pumpinko完成签到,获得积分10
16秒前
木cheng发布了新的文献求助30
17秒前
17秒前
19秒前
柠檬酸循环完成签到,获得积分20
19秒前
ZY完成签到,获得积分10
20秒前
20秒前
心斋发布了新的文献求助10
20秒前
21秒前
一个稚气的小孩完成签到,获得积分10
21秒前
lyric完成签到,获得积分10
21秒前
22秒前
赘婿应助俏皮绿蓉采纳,获得10
22秒前
源主儿应助FartKing采纳,获得10
22秒前
22秒前
1223发布了新的文献求助10
23秒前
科研通AI2S应助宇文听南采纳,获得10
23秒前
打工人完成签到,获得积分10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313182
求助须知:如何正确求助?哪些是违规求助? 2945559
关于积分的说明 8525969
捐赠科研通 2621352
什么是DOI,文献DOI怎么找? 1433465
科研通“疑难数据库(出版商)”最低求助积分说明 665025
邀请新用户注册赠送积分活动 650512