Joint Feature Adaptation and Graph Adaptive Label Propagation for Cross-Subject Emotion Recognition From EEG Signals

计算机科学 模式识别(心理学) 人工智能 情绪分类 脑电图 语音识别 图形 机器学习 心理学 理论计算机科学 精神科
作者
Yong Peng,Wen-Juan Wang,Wanzeng Kong,Feiping Nie,Bao‐Liang Lu,Andrzej Cichocki
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:13 (4): 1941-1958 被引量:22
标识
DOI:10.1109/taffc.2022.3189222
摘要

Though Electroencephalogram (EEG) could objectively reflect emotional states of our human beings, its weak, non-stationary, and low signal-to-noise properties easily cause the individual differences. To enhance the universality of affective brain-computer interface systems, transfer learning has been widely used to alleviate the data distribution discrepancies among subjects. However, most of existing approaches focused mainly on the domain-invariant feature learning, which is not unified together with the recognition process. In this paper, we propose a joint feature adaptation and graph adaptive label propagation model (JAGP) for cross-subject emotion recognition from EEG signals, which seamlessly unifies the three components of domain-invariant feature learning, emotional state estimation and optimal graph learning together into a single objective. We conduct extensive experiments on two benchmark SEED_IV and SEED_V data sets and the results reveal that 1) the recognition performance is greatly improved, indicating the effectiveness of the triple unification mode; 2) the emotion metric of EEG samples are gradually optimized during model training, showing the necessity of optimal graph learning, and 3) the projection matrix-induced feature importance is obtained based on which the critical frequency bands and brain regions corresponding to subject-invariant features can be automatically identified, demonstrating the superiority of the learned shared subspace.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Yatpome发布了新的文献求助10
2秒前
赵哈哈完成签到,获得积分10
3秒前
3秒前
4秒前
6秒前
zhao完成签到,获得积分10
6秒前
luoyujia发布了新的文献求助10
7秒前
8秒前
传奇3应助踏实映天采纳,获得10
8秒前
哈哈哈哈发布了新的文献求助10
8秒前
lyy66964193完成签到,获得积分10
10秒前
渣渣辉发布了新的文献求助10
10秒前
mashichuang发布了新的文献求助10
13秒前
15秒前
15秒前
小马甲应助上的工人进场采纳,获得10
16秒前
逆蝶发布了新的文献求助10
16秒前
wen发布了新的文献求助10
17秒前
LeimingDai完成签到,获得积分10
17秒前
酷波er应助苹果可燕采纳,获得10
18秒前
久久完成签到,获得积分10
18秒前
19秒前
19秒前
DT发布了新的文献求助10
20秒前
21秒前
da_line发布了新的文献求助10
21秒前
田様应助Xuancheng_SINH采纳,获得10
21秒前
雷培发布了新的文献求助10
23秒前
ill完成签到,获得积分10
24秒前
ArdenWang完成签到,获得积分10
24秒前
24秒前
赵帅完成签到 ,获得积分10
29秒前
30秒前
31秒前
32秒前
wu完成签到 ,获得积分10
33秒前
苹果可燕发布了新的文献求助10
33秒前
从容襄完成签到,获得积分10
33秒前
酷波er应助Yatpome采纳,获得10
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997731
求助须知:如何正确求助?哪些是违规求助? 3537261
关于积分的说明 11271137
捐赠科研通 3276409
什么是DOI,文献DOI怎么找? 1806986
邀请新用户注册赠送积分活动 883639
科研通“疑难数据库(出版商)”最低求助积分说明 809982