Joint Feature Adaptation and Graph Adaptive Label Propagation for Cross-Subject Emotion Recognition From EEG Signals

计算机科学 模式识别(心理学) 人工智能 情绪分类 脑电图 语音识别 图形 机器学习 心理学 理论计算机科学 精神科
作者
Yong Peng,Wen-Juan Wang,Wanzeng Kong,Feiping Nie,Bao‐Liang Lu,Andrzej Cichocki
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:13 (4): 1941-1958 被引量:22
标识
DOI:10.1109/taffc.2022.3189222
摘要

Though Electroencephalogram (EEG) could objectively reflect emotional states of our human beings, its weak, non-stationary, and low signal-to-noise properties easily cause the individual differences. To enhance the universality of affective brain-computer interface systems, transfer learning has been widely used to alleviate the data distribution discrepancies among subjects. However, most of existing approaches focused mainly on the domain-invariant feature learning, which is not unified together with the recognition process. In this paper, we propose a joint feature adaptation and graph adaptive label propagation model (JAGP) for cross-subject emotion recognition from EEG signals, which seamlessly unifies the three components of domain-invariant feature learning, emotional state estimation and optimal graph learning together into a single objective. We conduct extensive experiments on two benchmark SEED_IV and SEED_V data sets and the results reveal that 1) the recognition performance is greatly improved, indicating the effectiveness of the triple unification mode; 2) the emotion metric of EEG samples are gradually optimized during model training, showing the necessity of optimal graph learning, and 3) the projection matrix-induced feature importance is obtained based on which the critical frequency bands and brain regions corresponding to subject-invariant features can be automatically identified, demonstrating the superiority of the learned shared subspace.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助fjaa采纳,获得10
1秒前
dayaya发布了新的文献求助10
1秒前
2秒前
科研通AI2S应助F冯采纳,获得10
2秒前
科研通AI6应助健壮小懒猪采纳,获得10
3秒前
SBQHY完成签到,获得积分10
3秒前
苗苗发布了新的文献求助10
3秒前
Hello应助luo采纳,获得10
3秒前
致行完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
怕孤独的访云完成签到 ,获得积分10
4秒前
4秒前
ZsJJkk完成签到,获得积分10
4秒前
4秒前
天阳完成签到,获得积分10
4秒前
果冻橙发布了新的文献求助10
4秒前
完美世界应助可爱的弘文采纳,获得10
5秒前
苏苏完成签到,获得积分10
5秒前
5秒前
房LY完成签到,获得积分10
5秒前
5秒前
5秒前
QQ完成签到,获得积分10
5秒前
6秒前
赘婿应助典雅的俊驰采纳,获得10
6秒前
liu完成签到,获得积分10
6秒前
。。。完成签到,获得积分10
6秒前
6秒前
天马行空完成签到,获得积分10
6秒前
7秒前
channy完成签到,获得积分10
7秒前
科研通AI6应助芝士奶盖采纳,获得10
7秒前
cc完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
端庄荔枝发布了新的文献求助10
10秒前
10秒前
陈惠卿88完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271