A survey on adversarial attacks in computer vision: Taxonomy, visualization and future directions

对抗制 计算机科学 分类学(生物学) 可视化 深度学习 领域(数学) 数据科学 构造(python库) 人工智能 机器学习 植物 生物 数学 纯数学 程序设计语言
作者
Teng Long,Qi Gao,Lili Xu,Zhangbing Zhou
出处
期刊:Computers & Security [Elsevier]
卷期号:121: 102847-102847 被引量:33
标识
DOI:10.1016/j.cose.2022.102847
摘要

• Classical approaches to taxonomy-based adversarial attacks are extensively discussed. • Based on the extended taxonomy, some recent popular adversarial attack methods are introduced and analyzed. • A knowledge graph is established, and based on this, the hotspots of related work are visualized and analyzed. • Future research directions are proposed to further improve adversarial attacks in the field of AI security. Deep learning has been widely applied in various fields such as computer vision, natural language processing, and data mining. Although deep learning has achieved significant success in solving complex problems, it has been shown that deep neural networks are vulnerable to adversarial attacks, resulting in models that fail to perform their tasks properly, which limits the application of deep learning in security-critical areas. In this paper, we first review some of the classical and latest representative adversarial attacks based on a reasonable taxonomy of adversarial attacks. Then, we construct a knowledge graph based on the citation relationship relying on the software VOSviewer, visualize and analyze the subject development in this field based on the information of 5923 articles from Scopus. In the end, possible research directions for the development about adversarial attacks are proposed based on the trends deduced by keywords detection analysis. All the data used for visualization are available at: https://github.com/NanyunLengmu/Adversarial-Attack-Visualization .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肥皂完成签到,获得积分10
刚刚
ff发布了新的文献求助30
1秒前
秃头僧发布了新的文献求助10
1秒前
3秒前
闪电侠完成签到,获得积分10
4秒前
桐桐应助艾米采纳,获得10
4秒前
FashionBoy应助玩家采纳,获得10
4秒前
5秒前
6秒前
诸沧海发布了新的文献求助10
6秒前
6秒前
6秒前
chitin chu完成签到,获得积分10
7秒前
星辰大海应助李小伟采纳,获得10
7秒前
脑洞疼应助心灵美的飞机采纳,获得10
8秒前
香蕉觅云应助晶杰采纳,获得10
8秒前
上上签完成签到,获得积分10
9秒前
12等等发布了新的文献求助10
9秒前
10秒前
autobot1发布了新的文献求助10
11秒前
Jay发布了新的文献求助30
11秒前
鱼莉完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
细心伟宸发布了新的文献求助10
15秒前
16秒前
英俊的铭应助zxw采纳,获得10
16秒前
GuMingyang完成签到,获得积分10
16秒前
1335804518完成签到,获得积分10
17秒前
12等等完成签到,获得积分10
17秒前
赵李奕安发布了新的文献求助10
19秒前
星星气球发布了新的文献求助50
19秒前
李小伟发布了新的文献求助10
20秒前
自信乐菱发布了新的文献求助10
20秒前
ABS发布了新的文献求助10
20秒前
23秒前
袁东完成签到,获得积分10
23秒前
wanci应助阳光采纳,获得10
24秒前
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149952
求助须知:如何正确求助?哪些是违规求助? 2800974
关于积分的说明 7842886
捐赠科研通 2458475
什么是DOI,文献DOI怎么找? 1308544
科研通“疑难数据库(出版商)”最低求助积分说明 628524
版权声明 601721