Evaluation of the Design of “Shape” and “Meaning” of Book Binding from the Perspective of Deep Learning

计算机科学 人工智能 集合(抽象数据类型) 透视图(图形) 特征(语言学) 核(代数) 深度学习 意义(存在) 机器学习 模式识别(心理学) 算法 数学 语言学 组合数学 哲学 程序设计语言 心理治疗师 心理学
作者
Xiujuan Wu,Zhiduan Cai
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-7 被引量:1
标识
DOI:10.1155/2022/1314362
摘要

Book binding is the procedure of manually accumulating a book in codex format from a well-ordered pile of paper sheets, which are folded together into sections or occasionally left as a stack of individual sheets. The books undergo binding into different shapes and sizes. Numerous kinds of book bindings are available, each of which comes with its own merits and demerits. Some of them are highly durable, some of them are light-weight, and some of them are attractive. Therefore, it is needed to effectively identify and classify the shape and type of book bindings. With this motivation, this paper develops a butterfly optimization algorithm with a deep learning-enabled book binding classification (BOADL-BBC) model. The major intention of the BOADL-BBC technique is to identify and categorise three different types of book bindings from the input images, namely, hard binding, soft binding, and long-stitch binding. The proposed BOADL-BBC technique initially employs a DL-based Inception v3 model to derive useful feature vectors from the images. For effective classification of book bindings, the BOA with wavelet kernel extreme learning machine (WKELM) model can be applied. The weight and bias values involved in the WKELM model can be effectively adjusted by the use of BOA for book binding classification shows the novelty of the work. To ensure the enhanced performance of the BOADL-BBC technique, a series of simulations were carried out using a set of images that people collected on their own. The experimental results stated that the BOADL-BBC technique has obtained a maximum book binding classification accuracy of 95.56%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷糊的七七完成签到,获得积分10
刚刚
1秒前
2秒前
哈哈发布了新的文献求助10
2秒前
wannada发布了新的文献求助10
3秒前
3秒前
魔幻的如冰完成签到,获得积分10
4秒前
4秒前
4秒前
共享精神应助小鱼儿采纳,获得10
6秒前
7秒前
舒适傲之发布了新的文献求助10
8秒前
接心软审稿人完成签到 ,获得积分10
9秒前
健康的襄发布了新的文献求助30
10秒前
10秒前
Jasper应助wannada采纳,获得10
10秒前
哈哈完成签到,获得积分10
10秒前
云起龙都发布了新的文献求助10
10秒前
Zn应助轻松的一刀采纳,获得10
11秒前
cdercder应助bluelu采纳,获得20
11秒前
11秒前
13秒前
WL关闭了WL文献求助
13秒前
GSQ发布了新的文献求助10
16秒前
Ariels完成签到,获得积分10
18秒前
Wink14551发布了新的文献求助10
19秒前
汉堡包应助ganlelelele采纳,获得20
19秒前
唐咩咩咩完成签到,获得积分10
20秒前
21秒前
21秒前
青栀完成签到,获得积分10
21秒前
冰勾板勾发布了新的文献求助30
21秒前
田様应助jingjingbang采纳,获得10
22秒前
爰采唐矣完成签到,获得积分10
22秒前
wang完成签到,获得积分10
22秒前
CipherSage应助yema采纳,获得10
22秒前
健康的襄完成签到,获得积分20
23秒前
23秒前
Borwn发布了新的文献求助10
24秒前
dopamine发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542648
求助须知:如何正确求助?哪些是违规求助? 3120011
关于积分的说明 9341267
捐赠科研通 2818101
什么是DOI,文献DOI怎么找? 1549346
邀请新用户注册赠送积分活动 722106
科研通“疑难数据库(出版商)”最低求助积分说明 712944