Evaluation of the Design of “Shape” and “Meaning” of Book Binding from the Perspective of Deep Learning

计算机科学 人工智能 集合(抽象数据类型) 透视图(图形) 特征(语言学) 核(代数) 深度学习 意义(存在) 机器学习 模式识别(心理学) 算法 数学 语言学 组合数学 哲学 程序设计语言 心理治疗师 心理学
作者
Xiujuan Wu,Zhiduan Cai
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Publishing Corporation]
卷期号:2022: 1-7 被引量:1
标识
DOI:10.1155/2022/1314362
摘要

Book binding is the procedure of manually accumulating a book in codex format from a well-ordered pile of paper sheets, which are folded together into sections or occasionally left as a stack of individual sheets. The books undergo binding into different shapes and sizes. Numerous kinds of book bindings are available, each of which comes with its own merits and demerits. Some of them are highly durable, some of them are light-weight, and some of them are attractive. Therefore, it is needed to effectively identify and classify the shape and type of book bindings. With this motivation, this paper develops a butterfly optimization algorithm with a deep learning-enabled book binding classification (BOADL-BBC) model. The major intention of the BOADL-BBC technique is to identify and categorise three different types of book bindings from the input images, namely, hard binding, soft binding, and long-stitch binding. The proposed BOADL-BBC technique initially employs a DL-based Inception v3 model to derive useful feature vectors from the images. For effective classification of book bindings, the BOA with wavelet kernel extreme learning machine (WKELM) model can be applied. The weight and bias values involved in the WKELM model can be effectively adjusted by the use of BOA for book binding classification shows the novelty of the work. To ensure the enhanced performance of the BOADL-BBC technique, a series of simulations were carried out using a set of images that people collected on their own. The experimental results stated that the BOADL-BBC technique has obtained a maximum book binding classification accuracy of 95.56%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助王弈轩采纳,获得10
2秒前
琲珂发布了新的文献求助10
2秒前
tdtk发布了新的文献求助10
3秒前
3秒前
x111发布了新的文献求助10
6秒前
平常的可乐完成签到 ,获得积分10
9秒前
小蘑菇应助x111采纳,获得10
10秒前
斯文败类应助宁为玉采纳,获得10
10秒前
SYLH应助自由从阳采纳,获得10
13秒前
wanci应助琲珂采纳,获得10
13秒前
Survivor完成签到,获得积分10
14秒前
16秒前
www完成签到 ,获得积分10
17秒前
17秒前
鹿七七啊发布了新的文献求助10
21秒前
吴小苏完成签到,获得积分10
22秒前
ugly_20201208给ugly_20201208的求助进行了留言
22秒前
斯文败类应助jiaxingsun采纳,获得10
23秒前
24秒前
xixixi发布了新的文献求助10
24秒前
万元帅完成签到 ,获得积分10
27秒前
光电很亮完成签到,获得积分10
27秒前
可爱的函函应助张佳明采纳,获得10
28秒前
周运来完成签到,获得积分10
29秒前
Ice发布了新的文献求助10
33秒前
34秒前
35秒前
ainiyiyayou发布了新的文献求助10
36秒前
张佳明完成签到,获得积分10
37秒前
39秒前
张佳明发布了新的文献求助10
40秒前
41秒前
浪迹天涯完成签到 ,获得积分10
42秒前
CodeCraft应助uu采纳,获得10
43秒前
lynn发布了新的文献求助30
45秒前
侯晓宝完成签到 ,获得积分10
46秒前
蘑菇采文发布了新的文献求助10
46秒前
研究僧发布了新的文献求助10
46秒前
FashionBoy应助俏皮火采纳,获得10
47秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953205
求助须知:如何正确求助?哪些是违规求助? 3498532
关于积分的说明 11092425
捐赠科研通 3229120
什么是DOI,文献DOI怎么找? 1785211
邀请新用户注册赠送积分活动 869286
科研通“疑难数据库(出版商)”最低求助积分说明 801415