已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

COPD identification and grading based on deep learning of lung parenchyma and bronchial wall in chest CT images

医学 慢性阻塞性肺病 队列 金标准(测试) 气道 放射科 逻辑回归 薄壁组织 阻塞性肺病 肺功能测试 内科学 分级(工程) 心脏病学 外科 病理 土木工程 工程类
作者
Lin Zhang,Beibei Jiang,Hendrik Joost Wisselink,Rozemarijn Vliegenthart,Xueqian Xie
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:95 (1133) 被引量:14
标识
DOI:10.1259/bjr.20210637
摘要

Objective Chest CT can display the main pathogenic factors of chronic obstructive pulmonary disease (COPD), emphysema and airway wall remodeling. This study aims to establish deep convolutional neural network (CNN) models using these two imaging markers to diagnose and grade COPD. Methods Subjects who underwent chest CT and pulmonary function test (PFT) from one hospital (n = 373) were retrospectively included as the training cohort, and subjects from another hospital (n = 226) were used as the external test cohort. According to the PFT results, all subjects were labeled as Global Initiative for Chronic Obstructive Lung Disease (GOLD) Grade 1, 2, 3, 4 or normal. Two DenseNet-201 CNNs were trained using CT images of lung parenchyma and bronchial wall to generate two corresponding confidence levels to indicate the possibility of COPD, then combined with logistic regression analysis. Quantitative CT was used for comparison. Results: In the test cohort, CNN achieved an area under the curve of 0.899 (95%CI: 0.853–0.935) to determine the existence of COPD, and an accuracy of 81.7% (76.2–86.7%), which was significantly higher than the accuracy 68.1% (61.6%–74.2%) using quantitative CT method (p < 0.05). For three-way (normal, GOLD 1–2, and GOLD 3–4) and five-way (normal, GOLD 1, 2, 3, and 4) classifications, CNN reached accuracies of 77.4 and 67.9%, respectively. Conclusion CNN can identify emphysema and airway wall remodeling on CT images to infer lung function and determine the existence and severity of COPD. It provides an alternative way to detect COPD using the extensively available chest CT. Advances in knowledge CNN can identify the main pathological changes of COPD (emphysema and airway wall remodeling) based on CT images, to infer lung function and determine the existence and severity of COPD. CNN reached an area under the curve of 0.853 to determine the existence of COPD in the external test cohort. The CNN approach provides an alternative and effective way for early detection of COPD using extensively used chest CT, as an important alternative to pulmonary function test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
信仰g完成签到,获得积分20
1秒前
科研通AI6应助小怪物采纳,获得10
1秒前
2秒前
光亮的雅香完成签到,获得积分10
3秒前
丘比特应助white采纳,获得10
3秒前
3秒前
changliu给changliu的求助进行了留言
3秒前
科研通AI6应助激昂的飞松采纳,获得10
4秒前
十一一十完成签到 ,获得积分10
4秒前
梅子完成签到 ,获得积分10
4秒前
5秒前
6秒前
呈安一丁完成签到,获得积分10
6秒前
Sylas发布了新的文献求助10
6秒前
李爱国应助心灵美的翠芙采纳,获得10
7秒前
8秒前
深情安青应助kento采纳,获得30
9秒前
完美世界应助染然苒冉采纳,获得10
10秒前
负责从丹发布了新的文献求助10
10秒前
小樊同学发布了新的文献求助10
10秒前
科研通AI2S应助畅快的虔纹采纳,获得10
10秒前
wg发布了新的文献求助10
11秒前
ypp发布了新的文献求助10
12秒前
KTdyd完成签到,获得积分10
12秒前
13秒前
小花发布了新的文献求助10
13秒前
14秒前
反复发作完成签到 ,获得积分10
15秒前
Ava应助Jessie采纳,获得10
16秒前
NexusExplorer应助sun采纳,获得10
17秒前
李爱国应助小樊同学采纳,获得10
17秒前
bkagyin应助川baba采纳,获得10
18秒前
冷树发布了新的文献求助10
19秒前
bx完成签到,获得积分10
20秒前
21秒前
小蘑菇应助Ting330采纳,获得10
21秒前
22秒前
13给13的求助进行了留言
22秒前
小樊同学完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400986
求助须知:如何正确求助?哪些是违规求助? 4520031
关于积分的说明 14077904
捐赠科研通 4432951
什么是DOI,文献DOI怎么找? 2433919
邀请新用户注册赠送积分活动 1426111
关于科研通互助平台的介绍 1404733