COPD identification and grading based on deep learning of lung parenchyma and bronchial wall in chest CT images

医学 慢性阻塞性肺病 队列 金标准(测试) 气道 放射科 逻辑回归 薄壁组织 阻塞性肺病 肺功能测试 内科学 分级(工程) 心脏病学 外科 病理 工程类 土木工程
作者
Lin Zhang,Beibei Jiang,Hendrik Joost Wisselink,Rozemarijn Vliegenthart,Xueqian Xie
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:95 (1133) 被引量:14
标识
DOI:10.1259/bjr.20210637
摘要

Objective Chest CT can display the main pathogenic factors of chronic obstructive pulmonary disease (COPD), emphysema and airway wall remodeling. This study aims to establish deep convolutional neural network (CNN) models using these two imaging markers to diagnose and grade COPD. Methods Subjects who underwent chest CT and pulmonary function test (PFT) from one hospital (n = 373) were retrospectively included as the training cohort, and subjects from another hospital (n = 226) were used as the external test cohort. According to the PFT results, all subjects were labeled as Global Initiative for Chronic Obstructive Lung Disease (GOLD) Grade 1, 2, 3, 4 or normal. Two DenseNet-201 CNNs were trained using CT images of lung parenchyma and bronchial wall to generate two corresponding confidence levels to indicate the possibility of COPD, then combined with logistic regression analysis. Quantitative CT was used for comparison. Results: In the test cohort, CNN achieved an area under the curve of 0.899 (95%CI: 0.853–0.935) to determine the existence of COPD, and an accuracy of 81.7% (76.2–86.7%), which was significantly higher than the accuracy 68.1% (61.6%–74.2%) using quantitative CT method (p < 0.05). For three-way (normal, GOLD 1–2, and GOLD 3–4) and five-way (normal, GOLD 1, 2, 3, and 4) classifications, CNN reached accuracies of 77.4 and 67.9%, respectively. Conclusion CNN can identify emphysema and airway wall remodeling on CT images to infer lung function and determine the existence and severity of COPD. It provides an alternative way to detect COPD using the extensively available chest CT. Advances in knowledge CNN can identify the main pathological changes of COPD (emphysema and airway wall remodeling) based on CT images, to infer lung function and determine the existence and severity of COPD. CNN reached an area under the curve of 0.853 to determine the existence of COPD in the external test cohort. The CNN approach provides an alternative and effective way for early detection of COPD using extensively used chest CT, as an important alternative to pulmonary function test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
噜啦啦发布了新的文献求助10
1秒前
DKE完成签到,获得积分10
1秒前
锖青完成签到,获得积分10
1秒前
蓝蜗牛完成签到,获得积分10
1秒前
平凡完成签到,获得积分10
1秒前
华仔应助zls采纳,获得10
2秒前
陈陈发布了新的文献求助10
2秒前
无异常发布了新的文献求助10
2秒前
2秒前
花杨梅发布了新的文献求助10
3秒前
3秒前
丘比特应助范同学采纳,获得10
3秒前
游手浩闲发布了新的文献求助10
4秒前
调皮的保温杯完成签到 ,获得积分10
4秒前
123456完成签到,获得积分10
4秒前
阿皮完成签到,获得积分10
5秒前
成就飞柏发布了新的文献求助10
5秒前
王小胖完成签到,获得积分10
5秒前
甜甜完成签到,获得积分10
5秒前
想吃榴莲发布了新的文献求助30
6秒前
认真科研发布了新的文献求助10
6秒前
wjw发布了新的文献求助10
7秒前
7秒前
7秒前
小猫完成签到,获得积分10
9秒前
9秒前
想发sci完成签到,获得积分10
9秒前
跳不起来的大神完成签到 ,获得积分10
9秒前
路鹿鹿发布了新的文献求助10
9秒前
11秒前
11秒前
无奈抽屉发布了新的文献求助10
11秒前
Hester完成签到,获得积分10
12秒前
顾矜应助噜啦啦采纳,获得10
12秒前
12秒前
小凯完成签到,获得积分10
13秒前
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151396
求助须知:如何正确求助?哪些是违规求助? 2802862
关于积分的说明 7850843
捐赠科研通 2460290
什么是DOI,文献DOI怎么找? 1309701
科研通“疑难数据库(出版商)”最低求助积分说明 628997
版权声明 601760