COPD identification and grading based on deep learning of lung parenchyma and bronchial wall in chest CT images

医学 慢性阻塞性肺病 队列 金标准(测试) 气道 放射科 逻辑回归 薄壁组织 阻塞性肺病 肺功能测试 内科学 分级(工程) 心脏病学 外科 病理 土木工程 工程类
作者
Lin Zhang,Beibei Jiang,Hendrik Joost Wisselink,Rozemarijn Vliegenthart,Xueqian Xie
出处
期刊:British Journal of Radiology [Wiley]
卷期号:95 (1133) 被引量:14
标识
DOI:10.1259/bjr.20210637
摘要

Objective Chest CT can display the main pathogenic factors of chronic obstructive pulmonary disease (COPD), emphysema and airway wall remodeling. This study aims to establish deep convolutional neural network (CNN) models using these two imaging markers to diagnose and grade COPD. Methods Subjects who underwent chest CT and pulmonary function test (PFT) from one hospital (n = 373) were retrospectively included as the training cohort, and subjects from another hospital (n = 226) were used as the external test cohort. According to the PFT results, all subjects were labeled as Global Initiative for Chronic Obstructive Lung Disease (GOLD) Grade 1, 2, 3, 4 or normal. Two DenseNet-201 CNNs were trained using CT images of lung parenchyma and bronchial wall to generate two corresponding confidence levels to indicate the possibility of COPD, then combined with logistic regression analysis. Quantitative CT was used for comparison. Results: In the test cohort, CNN achieved an area under the curve of 0.899 (95%CI: 0.853–0.935) to determine the existence of COPD, and an accuracy of 81.7% (76.2–86.7%), which was significantly higher than the accuracy 68.1% (61.6%–74.2%) using quantitative CT method (p < 0.05). For three-way (normal, GOLD 1–2, and GOLD 3–4) and five-way (normal, GOLD 1, 2, 3, and 4) classifications, CNN reached accuracies of 77.4 and 67.9%, respectively. Conclusion CNN can identify emphysema and airway wall remodeling on CT images to infer lung function and determine the existence and severity of COPD. It provides an alternative way to detect COPD using the extensively available chest CT. Advances in knowledge CNN can identify the main pathological changes of COPD (emphysema and airway wall remodeling) based on CT images, to infer lung function and determine the existence and severity of COPD. CNN reached an area under the curve of 0.853 to determine the existence of COPD in the external test cohort. The CNN approach provides an alternative and effective way for early detection of COPD using extensively used chest CT, as an important alternative to pulmonary function test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zxzb完成签到,获得积分10
2秒前
苹果萧完成签到 ,获得积分10
5秒前
宋江他大表哥完成签到,获得积分10
5秒前
able发布了新的文献求助10
5秒前
王先生完成签到 ,获得积分10
6秒前
H.发布了新的文献求助10
6秒前
luoluo完成签到,获得积分10
7秒前
7秒前
高分子完成签到,获得积分10
7秒前
yian发布了新的文献求助10
8秒前
yar应助体贴凌柏采纳,获得10
9秒前
自由的雪一完成签到,获得积分10
9秒前
Ava应助李振博采纳,获得200
9秒前
JW发布了新的文献求助10
10秒前
无限的千凝完成签到 ,获得积分10
11秒前
CipherSage应助YeeYee采纳,获得10
11秒前
11秒前
Ander完成签到 ,获得积分10
12秒前
化白完成签到,获得积分10
13秒前
H.完成签到,获得积分10
13秒前
chuzihang完成签到 ,获得积分10
13秒前
科研小狗完成签到,获得积分10
19秒前
11完成签到,获得积分10
20秒前
柏林寒冬应助QAQ采纳,获得10
22秒前
Flynn完成签到 ,获得积分10
24秒前
25秒前
25秒前
BZPL完成签到,获得积分10
26秒前
LANER完成签到 ,获得积分10
26秒前
26秒前
ww完成签到 ,获得积分10
26秒前
拉布拉多多不多完成签到,获得积分10
27秒前
多肉丸子完成签到,获得积分10
28秒前
yian完成签到,获得积分10
28秒前
HJJHJH发布了新的文献求助30
29秒前
正直无极完成签到,获得积分10
29秒前
认真的一刀完成签到,获得积分10
29秒前
杨天天完成签到,获得积分0
29秒前
yukiseto发布了新的文献求助30
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029