COPD identification and grading based on deep learning of lung parenchyma and bronchial wall in chest CT images

医学 慢性阻塞性肺病 队列 金标准(测试) 气道 放射科 逻辑回归 薄壁组织 阻塞性肺病 肺功能测试 内科学 分级(工程) 心脏病学 外科 病理 土木工程 工程类
作者
Lin Zhang,Beibei Jiang,Hendrik Joost Wisselink,Rozemarijn Vliegenthart,Xueqian Xie
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:95 (1133) 被引量:14
标识
DOI:10.1259/bjr.20210637
摘要

Objective Chest CT can display the main pathogenic factors of chronic obstructive pulmonary disease (COPD), emphysema and airway wall remodeling. This study aims to establish deep convolutional neural network (CNN) models using these two imaging markers to diagnose and grade COPD. Methods Subjects who underwent chest CT and pulmonary function test (PFT) from one hospital (n = 373) were retrospectively included as the training cohort, and subjects from another hospital (n = 226) were used as the external test cohort. According to the PFT results, all subjects were labeled as Global Initiative for Chronic Obstructive Lung Disease (GOLD) Grade 1, 2, 3, 4 or normal. Two DenseNet-201 CNNs were trained using CT images of lung parenchyma and bronchial wall to generate two corresponding confidence levels to indicate the possibility of COPD, then combined with logistic regression analysis. Quantitative CT was used for comparison. Results: In the test cohort, CNN achieved an area under the curve of 0.899 (95%CI: 0.853–0.935) to determine the existence of COPD, and an accuracy of 81.7% (76.2–86.7%), which was significantly higher than the accuracy 68.1% (61.6%–74.2%) using quantitative CT method (p < 0.05). For three-way (normal, GOLD 1–2, and GOLD 3–4) and five-way (normal, GOLD 1, 2, 3, and 4) classifications, CNN reached accuracies of 77.4 and 67.9%, respectively. Conclusion CNN can identify emphysema and airway wall remodeling on CT images to infer lung function and determine the existence and severity of COPD. It provides an alternative way to detect COPD using the extensively available chest CT. Advances in knowledge CNN can identify the main pathological changes of COPD (emphysema and airway wall remodeling) based on CT images, to infer lung function and determine the existence and severity of COPD. CNN reached an area under the curve of 0.853 to determine the existence of COPD in the external test cohort. The CNN approach provides an alternative and effective way for early detection of COPD using extensively used chest CT, as an important alternative to pulmonary function test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助布谷采纳,获得10
1秒前
1秒前
1秒前
229完成签到,获得积分20
2秒前
2秒前
勤恳凡之完成签到,获得积分10
3秒前
3秒前
柠檬味电子对儿完成签到,获得积分10
3秒前
高挑的语薇完成签到,获得积分10
4秒前
4秒前
5秒前
FashionBoy应助ZiZi采纳,获得10
5秒前
活泼的安柏完成签到,获得积分10
5秒前
爱啃大虾发布了新的文献求助10
6秒前
极客晨风完成签到,获得积分10
6秒前
晶晶完成签到,获得积分10
6秒前
耶耶耶完成签到,获得积分10
6秒前
期待完成签到,获得积分10
7秒前
7秒前
Lucas应助wang采纳,获得10
7秒前
大胖发布了新的文献求助10
7秒前
aaa完成签到,获得积分10
8秒前
VDC发布了新的文献求助10
8秒前
9秒前
yezi完成签到 ,获得积分10
10秒前
小马甲应助知安采纳,获得10
10秒前
Ferry完成签到,获得积分10
10秒前
10秒前
Cilin完成签到,获得积分10
11秒前
Sophia发布了新的文献求助10
12秒前
香蕉觅云应助巴旦木采纳,获得10
12秒前
13秒前
lixiao1912发布了新的文献求助10
13秒前
la完成签到,获得积分10
13秒前
不不鱼完成签到,获得积分10
13秒前
fei应助hsa_ID采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
老王完成签到,获得积分10
14秒前
hcdx完成签到,获得积分10
14秒前
顺心的皮卡丘完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244