已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

COPD identification and grading based on deep learning of lung parenchyma and bronchial wall in chest CT images

医学 慢性阻塞性肺病 队列 金标准(测试) 气道 放射科 逻辑回归 薄壁组织 阻塞性肺病 肺功能测试 内科学 分级(工程) 心脏病学 外科 病理 土木工程 工程类
作者
Lin Zhang,Beibei Jiang,Hendrik Joost Wisselink,Rozemarijn Vliegenthart,Xueqian Xie
出处
期刊:British Journal of Radiology [Wiley]
卷期号:95 (1133) 被引量:14
标识
DOI:10.1259/bjr.20210637
摘要

Objective Chest CT can display the main pathogenic factors of chronic obstructive pulmonary disease (COPD), emphysema and airway wall remodeling. This study aims to establish deep convolutional neural network (CNN) models using these two imaging markers to diagnose and grade COPD. Methods Subjects who underwent chest CT and pulmonary function test (PFT) from one hospital (n = 373) were retrospectively included as the training cohort, and subjects from another hospital (n = 226) were used as the external test cohort. According to the PFT results, all subjects were labeled as Global Initiative for Chronic Obstructive Lung Disease (GOLD) Grade 1, 2, 3, 4 or normal. Two DenseNet-201 CNNs were trained using CT images of lung parenchyma and bronchial wall to generate two corresponding confidence levels to indicate the possibility of COPD, then combined with logistic regression analysis. Quantitative CT was used for comparison. Results: In the test cohort, CNN achieved an area under the curve of 0.899 (95%CI: 0.853–0.935) to determine the existence of COPD, and an accuracy of 81.7% (76.2–86.7%), which was significantly higher than the accuracy 68.1% (61.6%–74.2%) using quantitative CT method (p < 0.05). For three-way (normal, GOLD 1–2, and GOLD 3–4) and five-way (normal, GOLD 1, 2, 3, and 4) classifications, CNN reached accuracies of 77.4 and 67.9%, respectively. Conclusion CNN can identify emphysema and airway wall remodeling on CT images to infer lung function and determine the existence and severity of COPD. It provides an alternative way to detect COPD using the extensively available chest CT. Advances in knowledge CNN can identify the main pathological changes of COPD (emphysema and airway wall remodeling) based on CT images, to infer lung function and determine the existence and severity of COPD. CNN reached an area under the curve of 0.853 to determine the existence of COPD in the external test cohort. The CNN approach provides an alternative and effective way for early detection of COPD using extensively used chest CT, as an important alternative to pulmonary function test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YaoHui发布了新的文献求助10
刚刚
lyw发布了新的文献求助10
刚刚
科研通AI6应助寇博翔采纳,获得10
3秒前
yumiao发布了新的文献求助10
4秒前
华仔应助vayne采纳,获得10
4秒前
dajiejie发布了新的文献求助10
4秒前
nenoaowu发布了新的文献求助10
5秒前
7秒前
9秒前
bkagyin应助nenoaowu采纳,获得10
9秒前
ZJX应助MyAI采纳,获得10
11秒前
11秒前
自然的铅笔完成签到 ,获得积分10
12秒前
yyyyyyypxxxx发布了新的文献求助30
13秒前
Sunbird完成签到,获得积分10
14秒前
毕蓝血完成签到 ,获得积分10
15秒前
15秒前
善良的花菜完成签到 ,获得积分10
15秒前
17秒前
王博林发布了新的文献求助30
18秒前
葡萄糖完成签到 ,获得积分10
18秒前
文静的海发布了新的文献求助10
21秒前
隐形曼青应助一吨好运采纳,获得10
22秒前
cccccgggmmm发布了新的文献求助30
23秒前
sc完成签到,获得积分20
24秒前
粗犷的夏槐完成签到 ,获得积分10
24秒前
25秒前
领导范儿应助高高采纳,获得10
26秒前
johnhush完成签到 ,获得积分10
26秒前
Lucas应助小巧尔蓝采纳,获得20
27秒前
英俊的铭应助李琼琼采纳,获得10
27秒前
科研小白关注了科研通微信公众号
27秒前
CodeCraft应助工大搬砖战神采纳,获得10
28秒前
oyfff完成签到 ,获得积分10
29秒前
番茄酱发布了新的文献求助10
30秒前
文静的海完成签到,获得积分10
30秒前
31秒前
32秒前
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396