阳极
材料科学
石墨烯
锂(药物)
电化学动力学
法拉第效率
异质结
化学工程
电化学
循环伏安法
介电谱
纳米技术
电极
光电子学
化学
物理化学
内分泌学
工程类
医学
作者
Ke Ran,Zidong Zhang,Wenjian Wang,Xingwang Hou,Shuai Wang,Yuan Fang,Ji Hyeon Song,Wenjing Xue,Rui Zhao
标识
DOI:10.1016/j.jcis.2022.06.014
摘要
Here, we proposed a new strategy to build the integrated graphene cube (Gr) framework@TiO2 composite to improve the ion transport kinetics and electrical conductivity of TiO2 as a long-life and high-capacity anode for lithium ion batteries. Combined with the salt template method for ultra-thin framework, the distinct structure of Gr@TiO2 shows an excellent electrochemical performance, e.g., initial coulombic efficiency (ICE), rate performance and specific capacity, due to the increased kinetics of lithium ions. Through this method, the integrity is dramatically improved and the pulverization and agglomeration of the anode after long-term cycles are restrained. The optimized Gr@TiO2 displays a high stable reversible capacity of 179.5 mAh g-1 after 4000 cycles at 1 A g-1, excellent rate performance (125.5 mAh g-1 at 5 A g-1). Kinetic studies through Electrochemical Impedance Spectra, Galvanostatic Intermittent Titration Technique and Linear Sweep Voltammetry confirm that the electrical conductivity and ion transport kinetics are dramatically improved through the ultra-thin graphene cube framework as a heterojunction structure of Gr@TiO2.
科研通智能强力驱动
Strongly Powered by AbleSci AI