Progressive Transfer Learning

计算机科学 水准点(测量) 学习迁移 人工智能 编码(集合论) 特征(语言学) 任务(项目管理) 特征提取 过程(计算) 模式识别(心理学) 机器学习 操作系统 哲学 大地测量学 经济 集合(抽象数据类型) 语言学 管理 程序设计语言 地理
作者
Zhengxu Yu,Dong Shen,Zhongming Jin,Jianqiang Huang,Deng Cai,Xian–Sheng Hua
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 1340-1348 被引量:11
标识
DOI:10.1109/tip.2022.3141258
摘要

Model fine-tuning is a widely used transfer learning approach in person Re-identification (ReID) applications, which fine-tuning a pre-trained feature extraction model into the target scenario instead of training a model from scratch. It is challenging due to the significant variations inside the target scenario, e.g., different camera viewpoint, illumination changes, and occlusion. These variations result in a gap between each mini-batch's distribution and the whole dataset's distribution when using mini-batch training. In this paper, we study model fine-tuning from the perspective of the aggregation and utilization of the dataset's global information when using mini-batch training. Specifically, we introduce a novel network structure called Batch-related Convolutional Cell (BConv-Cell), which progressively collects the dataset's global information into a latent state and uses it to rectify the extracted feature. Based on BConv-Cells, we further proposed the Progressive Transfer Learning (PTL) method to facilitate the model fine-tuning process by jointly optimizing BConv-Cells and the pre-trained ReID model. Empirical experiments show that our proposal can greatly improve the ReID model's performance on MSMT17, Market-1501, CUHK03, and DukeMTMC-reID datasets. Moreover, we extend our proposal to the general image classification task. The experiments in several image classification benchmark datasets demonstrate that our proposal can significantly improve baseline models' performance. The code has been released at https://github.com/ZJULearning/PTL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dc123456发布了新的文献求助10
2秒前
2秒前
无心的怜烟应助eternity136采纳,获得10
3秒前
共享精神应助魁梧的鲂采纳,获得10
4秒前
坦率续发布了新的文献求助10
4秒前
5秒前
朴素尔蓝完成签到,获得积分10
6秒前
zjspidany应助敏敏采纳,获得10
6秒前
香蕉觅云应助Jimmy采纳,获得30
8秒前
iNk应助显隐采纳,获得10
9秒前
9秒前
lmy发布了新的文献求助10
9秒前
dc123456完成签到,获得积分10
10秒前
爱静静应助rysben采纳,获得10
10秒前
10秒前
悠然xz发布了新的文献求助10
10秒前
能干的茗发布了新的文献求助10
10秒前
11秒前
12秒前
爱静静应助fatcat采纳,获得10
13秒前
洁白的宇天完成签到 ,获得积分10
14秒前
14秒前
英俊的铭应助甘蔗侠采纳,获得10
15秒前
小王发布了新的文献求助10
15秒前
小刘小刘发布了新的文献求助10
15秒前
黎明完成签到,获得积分10
17秒前
香蕉觅云应助鸿鹄在天涯采纳,获得10
18秒前
Ava应助坦率续采纳,获得10
19秒前
木子青山完成签到,获得积分10
19秒前
21秒前
英姑应助能干的茗采纳,获得10
21秒前
21秒前
丘比特应助小王采纳,获得10
22秒前
23秒前
chenchenchen发布了新的文献求助10
24秒前
25秒前
彭于晏应助NINI采纳,获得10
25秒前
26秒前
柚子发布了新的文献求助10
26秒前
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314052
求助须知:如何正确求助?哪些是违规求助? 2946471
关于积分的说明 8530176
捐赠科研通 2622111
什么是DOI,文献DOI怎么找? 1434341
科研通“疑难数据库(出版商)”最低求助积分说明 665205
邀请新用户注册赠送积分活动 650804