数学
线性系统
应用数学
数学优化
趋同(经济学)
规范(哲学)
贪婪算法
系数矩阵
数学分析
特征向量
政治学
经济增长
量子力学
物理
经济
法学
作者
Zhong‐Zhi Bai,Wen-Ting Wu
摘要
For solving large-scale systems of linear equations by iteration methods, we introduce an effective probability criterion for selecting the working rows from the coefficient matrix and construct a greedy randomized Kaczmarz method. It is proved that this method converges to the unique least-norm solution of the linear system when it is consistent. Theoretical analysis demonstrates that the convergence rate of the greedy randomized Kaczmarz method is much faster than the randomized Kaczmarz method, and numerical results also show that the greedy randomized Kaczmarz method is more efficient than the randomized Kaczmarz method.
科研通智能强力驱动
Strongly Powered by AbleSci AI