荧光
缺氧(环境)
氧化还原
绿色荧光蛋白
化学
荧光蛋白
生物物理学
细胞生物学
生物化学
生物
氧气
无机化学
物理
有机化学
量子力学
基因
作者
Hanyang Hu,Aoxue Wang,Li Huang,Yejun Zou,Yanfang Gu,Xianjun Chen,Yuzheng Zhao,Yi Yang
标识
DOI:10.1016/j.freeradbiomed.2018.03.041
摘要
Genetically encoded fluorescent sensors are widely used to visualize secondary messengers, metabolites and dynamic events in living cells. However, almost all of these sensors are based on Aequorea GFPs or GFP-like proteins, which do not correctly maturate and fluoresce under hypoxia or anoxic conditions, greatly limiting their application in biomedical research. Herein, we provide a novel strategy for design of sensors and report a series of thiol redox-sensitive sensor based on a recently discovered oxygen-independent fluorescent protein UnaG from Japanese eel. These redox sensors have large dynamic range, rapid responsiveness, a flexible "switch", and pH-independence, are particularly compatible with hypoxia conditions, and therefore represent a substantial improvement for live-cell redox measurement. We further demonstrated the versatility of these redox sensors, by simultaneously monitoring redox changes and hypoxia state in living cells, thereby proving its capability as a powerful and flexible tool for indexing multidimensional metabolism data in the context of physiological stressors and pathological states. These redox sensors are not only the first case of UnaG-based functional sensors, but also the first case of functional sensors based on non GFP-like proteins. Based on this strategy, more oxygen-independent biosensors could be developed, hence, provide new opportunities for bioimaging.
科研通智能强力驱动
Strongly Powered by AbleSci AI