化学
色谱法
溶剂
调制(音乐)
有机化学
美学
哲学
作者
Matthias Pursch,Antje Wegener,Stephan Buckenmaier
标识
DOI:10.1016/j.chroma.2018.05.059
摘要
A new methodology is presented for two-dimensional liquid chromatography (2D-LC) separations of polymers. Active solvent modulation (ASM) was evaluated in its effectiveness to enhance solvent compatibility for both separation dimensions. As an example the determination of target compounds in epoxy resins was used. Ultra-high pressure size-exclusion chromatography was applied in the first dimension using THF as the solvent. The second dimension separation was operated in reversed-phase mode using an acetonitrile/water gradient. ASM prevents sample breakthrough in the second dimension and produces chromatograms that are of great peak shape and high resolution. It enables very sensitive determination of target components down to the low ppm level. The resulting high-speed 2D-LC method (10 min analysis time) showed good linearity (R2 > 0.9995) and reproducibility (as low as 0.3–0.7% peak area RSD). ASM was also applied in comprehensive 2D-LC (SECxLC) mode for characterization of molecular weight and chemical composition distribution of a polymer blend consisting of epoxy novolac and phenol novolac. The SECxLC separation was executed at short run times (20 min). ASM technology can markedly enhance productivity in 2D-LC analysis for many complex sample matrices.
科研通智能强力驱动
Strongly Powered by AbleSci AI