Wnt信号通路
癌症研究
类风湿性关节炎
生物
哼
炎症
医学
内科学
艺术
遗传学
艺术史
基因
表演艺术
作者
Guoqing Li,Yuxuan Fang,Ying Liu,Fanru Meng,Xia Wu,Chun-Wang Zhang,Liang Yu,Dan Liu,Bo Gao
出处
期刊:Human Gene Therapy
[Mary Ann Liebert, Inc.]
日期:2019-03-26
卷期号:30 (8): 1008-1022
被引量:47
摘要
Fibroblast-like synoviocytes (FLSs) participate in the pathogenesis of rheumatoid arthritis (RA). Emerging evidence has highlighted the role of long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) and its potential involvement in RA. In this study, we test the hypothesis that the MALAT1 might inhibit proliferation and inflammatory response of FLSs in RA. The expression of MALAT1 was examined in synovial tissues from patients with RA. The effect of MALAT1 on cultured FLSs was analyzed by introducing overexpressed MALAT1 or short hairpin RNA (shRNA) against MALAT1. To validate whether methylation of CTNNB1 promoter was affected by MALAT1 alternation, we assessed the recruitment of DNA methyltransferases to CTNNB1 promoter. In cultured FLSs with shRNA-mediated CTNNB1 knockdown or activated Wnt signaling, we found the interaction between CTNNB1 and Wnt signaling. MALAT1 expression was reduced in synovial tissues of RA. MALAT1 could bind to CTNNB1 promoter region and recruit methyltransferase to promote CTNNB1 promoter methylation, thereby inhibiting CTNNB1. Notably, MALAT1 could suppress the transcription and expression of CTNNB1, thereby modulating the Wnt signaling pathway. Silenced MALAT1 stimulated the nucleation of β-catenin and the secretion of inflammatory cytokines including interleukin-6, interleukin-10, and tumor necrosis factor-α. Additionally, shRNA-mediated MALAT1 silencing elevated proliferation and suppressed apoptosis of FLSs accompanied. These findings provide evidence for the inhibitory effect of MALAT1 on proliferation and inflammation of FLSs by promoting CTNNB1 promoter methylation and inhibiting the Wnt signaling pathway. Therefore, this study provides a candidate therapeutic target for RA.
科研通智能强力驱动
Strongly Powered by AbleSci AI