A Prediction Model Using Machine Learning Algorithm for Assessing Stone-Free Status after Single Session Shock Wave Lithotripsy to Treat Ureteral Stones

医学 冲击波碎石术 算法 会话(web分析) 碎石术 外科 人工智能 机器学习 计算机科学 万维网
作者
Min Soo Choo,Saangyong Uhmn,Jong Keun Kim,Jun Hyun Han,Dong Hoi Kim,Jin Kim,Seong Ho Lee
出处
期刊:The Journal of Urology [Ovid Technologies (Wolters Kluwer)]
卷期号:200 (6): 1371-1377 被引量:52
标识
DOI:10.1016/j.juro.2018.06.077
摘要

No AccessJournal of UrologyNew Technology and Techniques1 Dec 2018A Prediction Model Using Machine Learning Algorithm for Assessing Stone-Free Status after Single Session Shock Wave Lithotripsy to Treat Ureteral Stones Min Soo Choo, Saangyong Uhmn, Jong Keun Kim, Jun Hyun Han, Dong-Hoi Kim, Jin Kim, and Seong Ho Lee Min Soo ChooMin Soo Choo , Saangyong UhmnSaangyong Uhmn , Jong Keun KimJong Keun Kim , Jun Hyun HanJun Hyun Han , Dong-Hoi KimDong-Hoi Kim , Jin KimJin Kim , and Seong Ho LeeSeong Ho Lee View All Author Informationhttps://doi.org/10.1016/j.juro.2018.06.077AboutFull TextPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract Purpose: The aim of this study was to develop and validate a decision support model using a machine learning algorithm to predict treatment success after single session shock wave lithotripsy in ureteral stone cases. Materials and Methods: Of the 1,803 patients treated with shock wave lithotripsy we selected those with ureteral stones who had preoperative computerized tomography available. Treatment success after single session shock wave lithotripsy was defined as freedom from stones or residual stone fragments less than 2 mm long on computerized tomography or plain x-ray of the kidneys, ureters and bladder 2 weeks later. Decision tree analysis was done using a machine learning algorithm to identify relevant parameters. A decision support model was developed to calculate the probability of treatment success. Results: A total of 791 patients were enrolled in study. Mean ± SD stone length was 5.9 ± 2.3 mm and mean stone volume was 89.3 ± 140.0 mm3. The overall treatment success rate after SWL was 64.4% (509 cases). The rate for upper, middle and lower ureter stones was 59.8%, 65.5% and 69.6%, respectively. On decision tree analysis the top 3 performance criteria factors were volume, length and HU. Decision models were constructed with all possible combinations of factors. The model with 15 factors had greater than 92% accuracy and an average ROC AUC of 0.951. Conclusions: We applied a machine learning algorithm, a subfield of artificial intelligence, to predict the outcome after single session shock wave lithotripsy for ureteral stones. A 92.29% accurate decision model was developed with 15 factors and an average ROC AUC of 0.951. References 1 : A clinical nomogram to predict the successful shock wave lithotripsy of renal and ureteral calculi. J Urol2011; 186: 556. Link, Google Scholar 2 : Prognostic factors for extracorporeal shock-wave lithotripsy of ureteric stones—a multivariate analysis study. Scand J Urol Nephrol2003; 37: 413. Google Scholar 3 : Preoperative nomograms for predicting stone-free rate after extracorporeal shock wave lithotripsy. J Urol2006; 176: 1453. Link, Google Scholar 4 : Factors predicting the success of extracorporeal shock wave lithotripsy in the treatment of ureteric calculi. Br J Med Surg Urol2011; 4: 243. Google Scholar 5 : Predictive factors of the outcome of extracorporeal shockwave lithotripsy for ureteral stones. Korean J Urol2012; 53: 424. Google Scholar 6 : Optimal skin-to-stone distance is a positive predictor for successful outcomes in upper ureter calculi following extracorporeal shock wave lithotripsy: a Bayesian model averaging approach. PLoS One2015; 10: e0144912. Google Scholar 7 : Clinical nomograms to predict stone-free rates after shock-wave lithotripsy: development and internal-validation. PLoS One2016; 11: e0149333. Google Scholar 8 : A practical formula to predict the stone-free rate of patients undergoing extracorporeal shock wave lithotripsy. Urol Sci2017; 28: 215. Google Scholar 9 : Computed tomography-based novel prediction model for the outcome of shockwave lithotripsy in proximal ureteral stones. J Endourol2016; 30: 810. Google Scholar 10 : Predicting early mortality after acute variceal hemorrhage based on classification and regression tree analysis. Clin Gastroenterol Hepatol2009; 7: 1347. Google Scholar 11 : Machine learning to identify multigland disease in primary hyperparathyroidism. J Surg Res2017; 219: 173. Google Scholar 12 : Computerized tomography magnified bone windows are superior to standard soft tissue windows for accurate measurement of stone size: an in vitro and clinical study. J Urol2009; 181: 1710. Link, Google Scholar 13 : A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution noncontrast computed tomography. Eur Urol2007; 51: 1688. Google Scholar 14 : Shock wave lithotripsy success determined by skin-to-stone distance on computed tomography. Urology2005; 66: 941. Google Scholar 15 : C4.5: Programs for Machine Learning. San Francisco: Morgan Kaufmann Publishers1993: 302. Google Scholar 16 : C50: C5.0 Decision Trees and Rule-Based Models. Available at https://CRAN.R-project.org/package=C50. Accessed June 20, 2018. Google Scholar 17 : Body size, body composition and fat distribution: comparative analysis of European, Maori, Pacific Island and Asian Indian adults. Br J Nutr2009; 102: 632. Google Scholar 18 : Artificial intelligence for decision making. In: Knowledge-Based Intelligent Information and Engineering Systems. Edited by . Berlin: Springer2006: 531. Google Scholar 19 : Applying artificial intelligence technology to support decision-making in nursing: a case study in Taiwan. Health Informatics J2015; 21: 137. Google Scholar 20 : Avoiding overfitting of decision trees. In: Principles of Data Mining. London: Springer2013: 121. Google Scholar 21 : Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness. PLoS Negl Trop Dis2008; 2: e196. Google Scholar © 2018 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetails Volume 200Issue 6December 2018Page: 1371-1377Supplementary Materials Advertisement Copyright & Permissions© 2018 by American Urological Association Education and Research, Inc.Keywordsdecision support techniqueslithotripsyclinical decision-makingureteral calculimachine learningMetricsAuthor Information Min Soo Choo More articles by this author Saangyong Uhmn More articles by this author Jong Keun Kim More articles by this author Jun Hyun Han More articles by this author Dong-Hoi Kim More articles by this author Jin Kim More articles by this author Seong Ho Lee More articles by this author Expand All Advertisement PDF downloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111发布了新的文献求助10
刚刚
情怀应助wjh采纳,获得10
1秒前
1秒前
Hey关闭了Hey文献求助
1秒前
学渣向下完成签到,获得积分10
1秒前
咚咚咚发布了新的文献求助10
1秒前
2秒前
willen完成签到,获得积分10
2秒前
2秒前
奇怪的柒完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
文静的枫叶完成签到,获得积分10
4秒前
科目三应助神麒小雪采纳,获得10
4秒前
zzznznnn发布了新的文献求助10
5秒前
pbf发布了新的文献求助20
5秒前
科研通AI5应助有风采纳,获得10
6秒前
Lin完成签到,获得积分10
6秒前
科研通AI5应助肉松小贝采纳,获得10
7秒前
粉色完成签到,获得积分10
7秒前
Ll发布了新的文献求助10
7秒前
7秒前
愉快彩虹发布了新的文献求助10
8秒前
CTL完成签到,获得积分10
8秒前
8秒前
共享精神应助加减乘除采纳,获得10
8秒前
8秒前
恬恬完成签到,获得积分10
8秒前
9秒前
22发布了新的文献求助10
9秒前
aacc956发布了新的文献求助10
9秒前
9秒前
谨慎涵柏完成签到,获得积分10
10秒前
快乐的如风完成签到,获得积分10
11秒前
12秒前
吃猫的鱼完成签到,获得积分10
12秒前
脑洞疼应助润润轩轩采纳,获得10
13秒前
刘文静完成签到,获得积分10
14秒前
Southluuu发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759