亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Prediction Model Using Machine Learning Algorithm for Assessing Stone-Free Status after Single Session Shock Wave Lithotripsy to Treat Ureteral Stones

医学 冲击波碎石术 算法 会话(web分析) 碎石术 外科 人工智能 机器学习 计算机科学 万维网
作者
Min Soo Choo,Saangyong Uhmn,Jong Keun Kim,Jun Hyun Han,Dong-Hoi Kim,Jin Kim,Seong Ho Lee
出处
期刊:The Journal of Urology [Lippincott Williams & Wilkins]
卷期号:200 (6): 1371-1377 被引量:63
标识
DOI:10.1016/j.juro.2018.06.077
摘要

No AccessJournal of UrologyNew Technology and Techniques1 Dec 2018A Prediction Model Using Machine Learning Algorithm for Assessing Stone-Free Status after Single Session Shock Wave Lithotripsy to Treat Ureteral Stones Min Soo Choo, Saangyong Uhmn, Jong Keun Kim, Jun Hyun Han, Dong-Hoi Kim, Jin Kim, and Seong Ho Lee Min Soo ChooMin Soo Choo , Saangyong UhmnSaangyong Uhmn , Jong Keun KimJong Keun Kim , Jun Hyun HanJun Hyun Han , Dong-Hoi KimDong-Hoi Kim , Jin KimJin Kim , and Seong Ho LeeSeong Ho Lee View All Author Informationhttps://doi.org/10.1016/j.juro.2018.06.077AboutFull TextPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract Purpose: The aim of this study was to develop and validate a decision support model using a machine learning algorithm to predict treatment success after single session shock wave lithotripsy in ureteral stone cases. Materials and Methods: Of the 1,803 patients treated with shock wave lithotripsy we selected those with ureteral stones who had preoperative computerized tomography available. Treatment success after single session shock wave lithotripsy was defined as freedom from stones or residual stone fragments less than 2 mm long on computerized tomography or plain x-ray of the kidneys, ureters and bladder 2 weeks later. Decision tree analysis was done using a machine learning algorithm to identify relevant parameters. A decision support model was developed to calculate the probability of treatment success. Results: A total of 791 patients were enrolled in study. Mean ± SD stone length was 5.9 ± 2.3 mm and mean stone volume was 89.3 ± 140.0 mm3. The overall treatment success rate after SWL was 64.4% (509 cases). The rate for upper, middle and lower ureter stones was 59.8%, 65.5% and 69.6%, respectively. On decision tree analysis the top 3 performance criteria factors were volume, length and HU. Decision models were constructed with all possible combinations of factors. The model with 15 factors had greater than 92% accuracy and an average ROC AUC of 0.951. Conclusions: We applied a machine learning algorithm, a subfield of artificial intelligence, to predict the outcome after single session shock wave lithotripsy for ureteral stones. A 92.29% accurate decision model was developed with 15 factors and an average ROC AUC of 0.951. References 1 : A clinical nomogram to predict the successful shock wave lithotripsy of renal and ureteral calculi. J Urol2011; 186: 556. Link, Google Scholar 2 : Prognostic factors for extracorporeal shock-wave lithotripsy of ureteric stones—a multivariate analysis study. Scand J Urol Nephrol2003; 37: 413. Google Scholar 3 : Preoperative nomograms for predicting stone-free rate after extracorporeal shock wave lithotripsy. J Urol2006; 176: 1453. Link, Google Scholar 4 : Factors predicting the success of extracorporeal shock wave lithotripsy in the treatment of ureteric calculi. Br J Med Surg Urol2011; 4: 243. Google Scholar 5 : Predictive factors of the outcome of extracorporeal shockwave lithotripsy for ureteral stones. Korean J Urol2012; 53: 424. Google Scholar 6 : Optimal skin-to-stone distance is a positive predictor for successful outcomes in upper ureter calculi following extracorporeal shock wave lithotripsy: a Bayesian model averaging approach. PLoS One2015; 10: e0144912. Google Scholar 7 : Clinical nomograms to predict stone-free rates after shock-wave lithotripsy: development and internal-validation. PLoS One2016; 11: e0149333. Google Scholar 8 : A practical formula to predict the stone-free rate of patients undergoing extracorporeal shock wave lithotripsy. Urol Sci2017; 28: 215. Google Scholar 9 : Computed tomography-based novel prediction model for the outcome of shockwave lithotripsy in proximal ureteral stones. J Endourol2016; 30: 810. Google Scholar 10 : Predicting early mortality after acute variceal hemorrhage based on classification and regression tree analysis. Clin Gastroenterol Hepatol2009; 7: 1347. Google Scholar 11 : Machine learning to identify multigland disease in primary hyperparathyroidism. J Surg Res2017; 219: 173. Google Scholar 12 : Computerized tomography magnified bone windows are superior to standard soft tissue windows for accurate measurement of stone size: an in vitro and clinical study. J Urol2009; 181: 1710. Link, Google Scholar 13 : A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution noncontrast computed tomography. Eur Urol2007; 51: 1688. Google Scholar 14 : Shock wave lithotripsy success determined by skin-to-stone distance on computed tomography. Urology2005; 66: 941. Google Scholar 15 : C4.5: Programs for Machine Learning. San Francisco: Morgan Kaufmann Publishers1993: 302. Google Scholar 16 : C50: C5.0 Decision Trees and Rule-Based Models. Available at https://CRAN.R-project.org/package=C50. Accessed June 20, 2018. Google Scholar 17 : Body size, body composition and fat distribution: comparative analysis of European, Maori, Pacific Island and Asian Indian adults. Br J Nutr2009; 102: 632. Google Scholar 18 : Artificial intelligence for decision making. In: Knowledge-Based Intelligent Information and Engineering Systems. Edited by . Berlin: Springer2006: 531. Google Scholar 19 : Applying artificial intelligence technology to support decision-making in nursing: a case study in Taiwan. Health Informatics J2015; 21: 137. Google Scholar 20 : Avoiding overfitting of decision trees. In: Principles of Data Mining. London: Springer2013: 121. Google Scholar 21 : Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness. PLoS Negl Trop Dis2008; 2: e196. Google Scholar © 2018 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetails Volume 200Issue 6December 2018Page: 1371-1377Supplementary Materials Advertisement Copyright & Permissions© 2018 by American Urological Association Education and Research, Inc.Keywordsdecision support techniqueslithotripsyclinical decision-makingureteral calculimachine learningMetricsAuthor Information Min Soo Choo More articles by this author Saangyong Uhmn More articles by this author Jong Keun Kim More articles by this author Jun Hyun Han More articles by this author Dong-Hoi Kim More articles by this author Jin Kim More articles by this author Seong Ho Lee More articles by this author Expand All Advertisement PDF downloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alisha完成签到,获得积分10
3秒前
35秒前
千里草完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
3分钟前
李健的粉丝团团长应助lan采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
lan完成签到,获得积分10
3分钟前
陈同学完成签到 ,获得积分10
3分钟前
lan发布了新的文献求助10
3分钟前
chen完成签到 ,获得积分10
3分钟前
sci2025opt完成签到 ,获得积分10
3分钟前
siv完成签到,获得积分10
4分钟前
科研通AI6应助懦弱的丹秋采纳,获得10
4分钟前
科研兵发布了新的文献求助10
4分钟前
天天快乐应助shee采纳,获得10
4分钟前
搜集达人应助科研兵采纳,获得10
4分钟前
insomnia417完成签到,获得积分0
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
6分钟前
6分钟前
7分钟前
上官若男应助科研通管家采纳,获得10
7分钟前
朴素易梦发布了新的文献求助30
7分钟前
7分钟前
7分钟前
7分钟前
科研通AI6应助懦弱的丹秋采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
8分钟前
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
bkagyin应助科研通管家采纳,获得10
9分钟前
聪明的云完成签到 ,获得积分10
9分钟前
9分钟前
量子星尘发布了新的文献求助10
10分钟前
朴素易梦完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596313
求助须知:如何正确求助?哪些是违规求助? 4008292
关于积分的说明 12409065
捐赠科研通 3687250
什么是DOI,文献DOI怎么找? 2032297
邀请新用户注册赠送积分活动 1065541
科研通“疑难数据库(出版商)”最低求助积分说明 950848