过电位
电催化剂
催化作用
金属有机骨架
过渡金属
密度泛函理论
化学工程
材料科学
吸附
化学
氢
电化学
无机化学
物理化学
计算化学
电极
有机化学
工程类
作者
Teng Liu,Peng Li,Na Yao,Gongzhen Cheng,Shengli Chen,Wei Luo,Yadong Yin
标识
DOI:10.1002/anie.201901409
摘要
Abstract Although electrocatalysts based on transition metal phosphides (TMPs) with cationic/anionic doping have been widely studied for hydrogen evolution reaction (HER), the origin of performance enhancement still remains elusive mainly due to the random dispersion of dopants. Herein, we report a controllable partial phosphorization strategy to generate CoP species within the Co‐based metal‐organic framework (Co‐MOF). Density functional theory calculations and experimental results reveal that the electron transfer from CoP to Co‐MOF through N‐P/N‐Co bonds could lead to the optimized adsorption energy of H 2 O (Δ G ) and hydrogen (Δ G H* ), which, together with the unique porous structure of Co‐MOF, contributes to the remarkable HER performance with an overpotential of 49 mV at a current density of 10 mA cm −2 in 1 m phosphate buffer solution (PBS, pH 7.0). The excellent catalytic performance exceeds almost all the documented TMP‐based and non‐noble‐metal‐based electrocatalysts. In addition, the CoP/Co‐MOF hybrid also displays Pt‐like performance in 0.5 m H 2 SO 4 and 1 m KOH, with the overpotentials of 27 and 34 mV, respectively, at a current density of 10 mA cm −2 .
科研通智能强力驱动
Strongly Powered by AbleSci AI