Organic-inorganic heterostructures for stretchable electronics

材料科学 异质结 可伸缩电子设备 柔性电子器件 数码产品 光电子学 纳米技术 有机半导体 有机电子学 半导体 制作
作者
Jhonathan Prieto Rojas
标识
DOI:10.1117/12.2519017
摘要

As new technologies arise such as wearable electronics, soft-robotics, Internet-of-Things (IoT), among others, mechanical compliance to diverse shapes has become an important new requirement for conventional electronics. Unfortunately, both conventional silicon-based electronic devices and printed circuit boards (PCBs) are characteristically rigid. Nonetheless, several strategies have been demonstrated to transform conventional electronics into more compliant platforms that can satisfy the new mechanical needs of the fore-mentioned novel technologies. In this paper, the use of organic-inorganic heterostructures will be discussed as an effective scheme to integrate diverse materials and simple techniques to achieve flexibility and even stretchability from the device level to system level. First, a novel approach will be described to develop silicon-based, highly-stretchable structures, through the optimized integration of different shapes and geometries, such as serpentines, horseshoes and spirals. Additionally, it will be shown that the incorporation of soft organic encapsulation can work synergistically to further improve the mechanical characteristics of the inorganic structures. On the other hand, a simple kirigami-based strategy will be described to show how to manufacture flexible and stretchable copper-onpolyimide- based PCBs. Once again, soft polymer encapsulation is demonstrated to improve the mechanical robustness of the implementation. Finally, the presented manufacturing strategies can offer an interesting and versatile approach to build ultra-conformal electronics from devices to system-on-board implementations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爱静静应助怡然的莫茗采纳,获得10
1秒前
2秒前
科研通AI5应助清秀的以云采纳,获得30
2秒前
李健的粉丝团团长应助xx采纳,获得10
4秒前
大豪子发布了新的文献求助30
4秒前
李繁蕊发布了新的文献求助10
4秒前
8秒前
8秒前
8秒前
8秒前
橘柚完成签到 ,获得积分10
9秒前
zmmmm发布了新的文献求助10
9秒前
领导范儿应助温言采纳,获得10
9秒前
思源应助OvO采纳,获得10
11秒前
迷糊发布了新的文献求助30
12秒前
LY发布了新的文献求助10
13秒前
zzz完成签到,获得积分10
13秒前
KimJongUn完成签到,获得积分10
13秒前
15秒前
15秒前
zy完成签到,获得积分10
16秒前
开心果子发布了新的文献求助10
16秒前
云痴子完成签到,获得积分10
17秒前
SciGPT应助粥粥采纳,获得10
17秒前
17秒前
17秒前
18秒前
苏源完成签到,获得积分10
18秒前
wu关闭了wu文献求助
18秒前
18秒前
19秒前
19秒前
20秒前
20秒前
20秒前
Shawn完成签到,获得积分10
21秒前
yltstt完成签到,获得积分10
22秒前
李小新发布了新的文献求助10
22秒前
成梦发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808