Predict DLBCL patients' recurrence within two years with Gaussian mixture model cluster oversampling and multi-kernel learning

混合模型 布里氏评分 计算机科学 人工智能 支持向量机 聚类分析 核(代数) 过采样 模式识别(心理学) 数学 带宽(计算) 组合数学 计算机网络
作者
Meng Xing,Yanbo Zhang,Hongmei Yu,Zhenhuan Yang,Xueling Li,Qiong Li,Yanlin Zhao,Zhiqiang Zhao,Yanhong Luo
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:226: 107103-107103 被引量:7
标识
DOI:10.1016/j.cmpb.2022.107103
摘要

Diffuse large B-cell lymphoma (DLBCL) is common in adults' non-Hodgkin's lymphoma. Relapse mainly occurs within two years after diagnosis and has a poor prognosis. Relapse after two years is less frequent and has a better prognosis. In this work, we constructed a relapse prediction model for diffuse large B-cell lymphoma patients within two years, expecting to provide a reference for Clinicians to implement individualized treatment.We propose a secondary-level class imbalance method based on Gaussian mixture model (GMM) clustering resampling to balance the data. Then use a multi-kernel support vector machine(SVM) to inscribe heterogeneous clinical data. Finally, merging them to identify recurrence patients within two years.Among all the class imbalance methods in this work, Inverse Weighted -GMM +SMOTEENN has the best performance. Compared with NO-GMM (Directl use the SMOTEENN without the GMM clustering process), its Area Under the ROC Curve(AUC) increases by 8.75%, and ECE and brier scores decrease 2.07% and 3.09%, respectively. Among the four classification algorithms in this work, Multiple kernel learning (MKL) has the most minimized brier scores and expected calibration error(ECE), the largest AUC, accuracy, Recall, precision and F1, has the best discrimination and calibration.Our inverse weighted -GMM+SMOTEENN+MKL (GMM-SENN-MKL) method can handle data class imbalance and clinical heterogeneity data well and can be used to predict recurrence in DLBCL patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷酷的修洁完成签到,获得积分20
1秒前
充电宝应助lorentzh采纳,获得10
2秒前
烟花应助缥缈的乌冬面采纳,获得10
2秒前
syhjxk发布了新的文献求助10
3秒前
jj关闭了jj文献求助
3秒前
Alex发布了新的文献求助10
3秒前
3秒前
3秒前
5秒前
5秒前
早期早睡发布了新的文献求助10
6秒前
7秒前
7秒前
多余发布了新的文献求助10
8秒前
可爱的函函应助细心青烟采纳,获得10
8秒前
wwwzy完成签到,获得积分20
11秒前
11秒前
11秒前
等等完成签到,获得积分10
11秒前
12秒前
CAOHOU举报岳苏佳求助涉嫌违规
12秒前
研友_VZG7GZ应助托塔李天王采纳,获得10
12秒前
云端北栀发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
谨慎太兰完成签到,获得积分10
14秒前
王一完成签到 ,获得积分10
15秒前
早期早睡完成签到,获得积分10
15秒前
16秒前
18秒前
Citrons发布了新的文献求助10
18秒前
18秒前
鱼没有jio发布了新的文献求助10
19秒前
yznfly应助跳跃的夜山采纳,获得50
19秒前
jj关闭了jj文献求助
19秒前
PANGDA完成签到 ,获得积分10
21秒前
21秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951219
求助须知:如何正确求助?哪些是违规求助? 3496615
关于积分的说明 11083276
捐赠科研通 3227034
什么是DOI,文献DOI怎么找? 1784184
邀请新用户注册赠送积分活动 868252
科研通“疑难数据库(出版商)”最低求助积分说明 801091