Multilevel structure-preserved GAN for domain adaptation in intravascular ultrasound analysis

血管内超声 鉴别器 计算机科学 人工智能 适应(眼睛) 约束(计算机辅助设计) 概化理论 一致性(知识库) 安全性分析 模式识别(心理学) 计算机视觉 数学 放射科 医学 计算机安全 统计 光学 电信 物理 几何学 探测器
作者
Menghua Xia,Hongbo Yang,Yanan Qu,Yi Guo,Guohui Zhou,Feng Zhang,Yuanyuan Wang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:82: 102614-102614 被引量:19
标识
DOI:10.1016/j.media.2022.102614
摘要

The poor generalizability of intravascular ultrasound (IVUS) analysis methods caused by the great diversity of IVUS datasets is hopefully addressed by the domain adaptation strategy. However, existing domain adaptation models underperform in intravascular structural preservation, because of the complex pathology and low contrast in IVUS images. Losing structural information during the domain adaptation would lead to inaccurate analyses of vascular states. In this paper, we propose a Multilevel Structure-Preserved Generative Adversarial Network (MSP-GAN) for transferring IVUS domains while maintaining intravascular structures. On the generator-discriminator baseline, the MSP-GAN integrates the transformer, contrastive restraint, and self-ensembling strategy, for effectively preserving structures in multi-levels, including global, local, and fine levels. For the global-level pathology maintenance, the generator explores long-range dependencies in IVUS images via an incorporated vision transformer. For the local-level anatomy consistency, a region-to-region correspondence is forced between the translated and source images via a superpixel-wise multiscale contrastive (SMC) constraint. For reducing distortions of fine-level structures, a self-ensembling mean teacher generates the pixel-wise pseudo-label and restricts the translated image via an uncertainty-aware teacher-student consistency (TSC) constraint. Experiments were conducted on 20 MHz and 40 MHz IVUS datasets from different medical centers. Ablation studies illustrate that each innovation contributes to intravascular structural preservation. Comparisons with representative domain adaptation models illustrate the superiority of the MSP-GAN in the structural preservation. Further comparisons with the state-of-the-art IVUS analysis accuracy demonstrate that the MSP-GAN is effective in enlarging the generalizability of diverse IVUS analysis methods and promoting accurate vessel and lumen segmentation and stenosis-related parameter quantification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
无私的芹发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
勤恳的宛菡完成签到,获得积分10
1秒前
橘子海发布了新的文献求助10
1秒前
自由的小鸟完成签到,获得积分10
2秒前
moon发布了新的文献求助10
2秒前
无私的芹发布了新的文献求助10
2秒前
2秒前
163发布了新的文献求助10
4秒前
无私的芹发布了新的文献求助10
4秒前
无私的芹发布了新的文献求助10
4秒前
无私的芹发布了新的文献求助30
4秒前
无私的芹发布了新的文献求助10
4秒前
无私的芹发布了新的文献求助10
4秒前
无私的芹发布了新的文献求助10
4秒前
ll应助科研通管家采纳,获得10
5秒前
ll应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Ava应助李李李采纳,获得10
5秒前
张叮当发布了新的文献求助10
7秒前
7秒前
Xuu完成签到,获得积分10
7秒前
小强给博修的求助进行了留言
7秒前
随意发布了新的文献求助10
8秒前
lalala发布了新的文献求助10
8秒前
33发布了新的文献求助10
9秒前
搜集达人应助moon采纳,获得10
9秒前
小静发布了新的文献求助10
9秒前
9秒前
joyemovie完成签到,获得积分10
10秒前
10秒前
F123456完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969557
求助须知:如何正确求助?哪些是违规求助? 3514377
关于积分的说明 11173836
捐赠科研通 3249692
什么是DOI,文献DOI怎么找? 1794979
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804836