已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multilevel structure-preserved GAN for domain adaptation in intravascular ultrasound analysis

血管内超声 鉴别器 计算机科学 人工智能 适应(眼睛) 约束(计算机辅助设计) 概化理论 一致性(知识库) 安全性分析 模式识别(心理学) 计算机视觉 数学 放射科 医学 计算机安全 统计 光学 电信 物理 几何学 探测器
作者
Menghua Xia,Hongbo Yang,Yanan Qu,Yi Guo,Guohui Zhou,Feng Zhang,Yuanyuan Wang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:82: 102614-102614 被引量:19
标识
DOI:10.1016/j.media.2022.102614
摘要

The poor generalizability of intravascular ultrasound (IVUS) analysis methods caused by the great diversity of IVUS datasets is hopefully addressed by the domain adaptation strategy. However, existing domain adaptation models underperform in intravascular structural preservation, because of the complex pathology and low contrast in IVUS images. Losing structural information during the domain adaptation would lead to inaccurate analyses of vascular states. In this paper, we propose a Multilevel Structure-Preserved Generative Adversarial Network (MSP-GAN) for transferring IVUS domains while maintaining intravascular structures. On the generator-discriminator baseline, the MSP-GAN integrates the transformer, contrastive restraint, and self-ensembling strategy, for effectively preserving structures in multi-levels, including global, local, and fine levels. For the global-level pathology maintenance, the generator explores long-range dependencies in IVUS images via an incorporated vision transformer. For the local-level anatomy consistency, a region-to-region correspondence is forced between the translated and source images via a superpixel-wise multiscale contrastive (SMC) constraint. For reducing distortions of fine-level structures, a self-ensembling mean teacher generates the pixel-wise pseudo-label and restricts the translated image via an uncertainty-aware teacher-student consistency (TSC) constraint. Experiments were conducted on 20 MHz and 40 MHz IVUS datasets from different medical centers. Ablation studies illustrate that each innovation contributes to intravascular structural preservation. Comparisons with representative domain adaptation models illustrate the superiority of the MSP-GAN in the structural preservation. Further comparisons with the state-of-the-art IVUS analysis accuracy demonstrate that the MSP-GAN is effective in enlarging the generalizability of diverse IVUS analysis methods and promoting accurate vessel and lumen segmentation and stenosis-related parameter quantification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
SciGPT应助海盐采纳,获得10
4秒前
66发布了新的文献求助10
4秒前
6秒前
8秒前
9秒前
10秒前
刘佳慧发布了新的文献求助10
12秒前
丘比特应助song采纳,获得10
14秒前
15秒前
研友_ndkkYL发布了新的文献求助10
15秒前
dongzh完成签到 ,获得积分10
17秒前
David发布了新的文献求助10
19秒前
哈哈发布了新的文献求助10
20秒前
wu完成签到,获得积分10
24秒前
竹萧发布了新的文献求助10
25秒前
David完成签到,获得积分10
25秒前
27秒前
27秒前
28秒前
28秒前
香蕉觅云应助SSS采纳,获得30
29秒前
ll应助xiaofeiyan采纳,获得10
30秒前
bc应助xiaofeiyan采纳,获得10
30秒前
ll应助xiaofeiyan采纳,获得20
30秒前
bc应助xiaofeiyan采纳,获得100
30秒前
李健的小迷弟应助xiaofeiyan采纳,获得10
30秒前
科研通AI5应助xiaofeiyan采纳,获得20
30秒前
斯文败类应助xiaofeiyan采纳,获得20
30秒前
30秒前
31秒前
32秒前
33秒前
ZJHYNL发布了新的文献求助10
34秒前
GHOMON发布了新的文献求助10
34秒前
叙余完成签到 ,获得积分10
34秒前
echo发布了新的文献求助10
35秒前
知犯何逆完成签到 ,获得积分10
36秒前
38秒前
符昱发布了新的文献求助10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976455
求助须知:如何正确求助?哪些是违规求助? 3520548
关于积分的说明 11203728
捐赠科研通 3257156
什么是DOI,文献DOI怎么找? 1798618
邀请新用户注册赠送积分活动 877819
科研通“疑难数据库(出版商)”最低求助积分说明 806523