无定形固体
材料科学
氢氧化物
光催化
异质结
化学工程
图层(电子)
纳米技术
催化作用
光电子学
有机化学
化学
工程类
作者
Lin Ye,Shaodong Sun,Xiaoli Yang,Xiaoxi Chen,Bian Yang,Daqin Yun,Xiaojing Yu,Man Yang,Qing Yang,Shuhua Liang,Jie Cui
标识
DOI:10.1016/j.jmst.2023.05.049
摘要
Amorphous materials are one of the important candidates for improving heterogeneous photocatalysts because of their unique electronic structures and abundant catalytic sites originating from disorder atomic arrangements. However, there is still much room for the development of new crystalline/amorphous heterogeneous composites for photocatalytic application. Hence efficient synthetic strategies for preparing new crystalline/amorphous heterojunctions are highly desired. Herein, we have realized the deep optimization of photocatalytic activity by fabricating crystalline/amorphous Cu2O/Ti-Fe layer double hydroxide (LDH) heterojunctions. Thanks to the typical Z-scheme mechanism originating from the crystalline/amorphous interfaces, the photocharge separation and catalytic active sites obviously enhance compared to single Cu2O and LDH counterparts. As expected, the photocatalytic removal of tetracycline (TC) of the as-prepared Cu2O/Ti-Fe LDH was over 5.2 and 2.2 times those of the pristine Cu2O nanospheres and Ti-Fe LDH nanosheets. This work illustrates the origin of crystalline Cu2O nanospheres encapsulated in amorphous Ti-Fe layer double hydroxide nanosheets for enhanced photocatalytic activity driven by visible light, and provide a general Cu2O-templated solution-phase synthetic method for the synthesis of novel double-metal layer double hydroxide amorphous nanostructures.
科研通智能强力驱动
Strongly Powered by AbleSci AI