Great Wall Construction Algorithm: A novel meta-heuristic algorithm for engineer problems

水准点(测量) 计算机科学 趋同(经济学) 数学优化 算法 人口 启发式 简单(哲学) 人气 最优化问题 质量(理念) 人工智能 数学 心理学 社会心理学 经济增长 经济 地理 社会学 认识论 大地测量学 人口学 哲学
作者
Ziyu Guan,Changjiang Ren,Jingtai Niu,Peixi Wang,Yizi Shang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:233: 120905-120905 被引量:49
标识
DOI:10.1016/j.eswa.2023.120905
摘要

In recent years, the optimization community has witnessed a surge in the popularity of population-based optimization methods. However, many of these methods suffer from various shortcomings, including unclear performance characteristics, incomplete validation, excessive reliance on metaphors, inadequate exploration and exploitation components, and compromised trade-offs between exploration and exploitation in real-world scenarios. As a result, users often find themselves needing to extensively modify and fine-tune these methods to achieve faster convergence, stable balance, and high-quality results. To shift the optimization community's focus towards performance rather than metaphorical changes, we propose a general population-based optimization technique called the Great Wall Construction Algorithm (GWCA). This study presents GWCA as a simple yet robust method with competitive performance for efficiently solving constrained and unconstrained problems. GWCA draws inspiration from the competition and elimination mechanisms observed among workers during the construction of the ancient Great Wall. It introduces a mathematical model of the labor movement to simulate the algorithm's dynamics. Unlike other methods that employ multiple models to generate new solutions, GWCA randomly assigns a single predefined motion model to each worker in every iteration. This unique approach showcases GWCA's dynamic nature, simple structure, high convergence performance, and ability to deliver satisfactory solution quality, thus outperforming existing optimization methods in terms of efficiency. To validate GWCA, we conduct extensive comparisons with popular and advanced algorithms on the IEEE CEC 2017 benchmark suite across different dimensions (D = 10, 30, 50, 100). Additionally, GWCA is applied to solve 16 constrained engineering problems and 6 NP-Hard problems, demonstrating its applicability in handling constrained and complex nonlinear problems. Finally, we compare GWCA's optimized solutions with those obtained from 33 advanced meta-heuristic algorithms, including the winner of CEC 2017. The results confirm the effectiveness of the proposed optimizer in solving a wide range of single-objective problems, surpassing popular base optimizers, advanced variants of existing methods, and several CEC winners. We present GWCA as an open-source population-based method that can serve as a standard optimization tool across various domains of artificial intelligence and machine learning. It exhibits a range of exploratory and exploitative features, offering high performance and optimization capabilities. The method is highly flexible, scalable, and can be further extended in terms of structure and application to accommodate diverse forms of optimization scenarios. https://github.com/guangian/Great-Wall-Construction-Algorithm-a-novel-meta-heuristic-algorithm-for-global-optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
忆往昔完成签到,获得积分20
刚刚
发文章完成签到,获得积分10
1秒前
坚强夜白发布了新的文献求助10
1秒前
陈冲发布了新的文献求助10
2秒前
2秒前
熊蔓蔓完成签到,获得积分10
2秒前
枫叶寻涔完成签到,获得积分10
2秒前
忆往昔发布了新的文献求助10
3秒前
4秒前
DrunSin发布了新的文献求助30
4秒前
6秒前
JamesPei应助陈冲采纳,获得10
7秒前
桐桐桐桐桐桐完成签到,获得积分10
7秒前
8秒前
1234发布了新的文献求助10
9秒前
9秒前
10秒前
不会吹口哨完成签到,获得积分10
10秒前
11秒前
迷路盼易发布了新的文献求助10
12秒前
13秒前
DQ发布了新的文献求助10
14秒前
XXDNC完成签到,获得积分10
14秒前
15秒前
16秒前
叶文轩发布了新的文献求助10
16秒前
结实成仁发布了新的文献求助30
17秒前
可靠世平完成签到,获得积分20
18秒前
1234完成签到,获得积分10
18秒前
Axton完成签到,获得积分10
19秒前
之外完成签到 ,获得积分10
19秒前
廖馨馨完成签到,获得积分10
20秒前
科研通AI2S应助之外采纳,获得10
23秒前
CodeCraft应助阿尔法贝塔采纳,获得10
23秒前
Hello应助九卫采纳,获得10
24秒前
昊昊完成签到,获得积分10
24秒前
后知后觉完成签到,获得积分10
25秒前
26秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952796
求助须知:如何正确求助?哪些是违规求助? 3498228
关于积分的说明 11091005
捐赠科研通 3228793
什么是DOI,文献DOI怎么找? 1785139
邀请新用户注册赠送积分活动 869145
科研通“疑难数据库(出版商)”最低求助积分说明 801350