Great Wall Construction Algorithm: A novel meta-heuristic algorithm for engineer problems

水准点(测量) 计算机科学 趋同(经济学) 数学优化 算法 人口 启发式 简单(哲学) 人气 最优化问题 质量(理念) 人工智能 数学 心理学 社会心理学 经济增长 经济 地理 社会学 认识论 大地测量学 人口学 哲学
作者
Ziyu Guan,Changjiang Ren,Jingtai Niu,Peixi Wang,Yizi Shang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:233: 120905-120905 被引量:49
标识
DOI:10.1016/j.eswa.2023.120905
摘要

In recent years, the optimization community has witnessed a surge in the popularity of population-based optimization methods. However, many of these methods suffer from various shortcomings, including unclear performance characteristics, incomplete validation, excessive reliance on metaphors, inadequate exploration and exploitation components, and compromised trade-offs between exploration and exploitation in real-world scenarios. As a result, users often find themselves needing to extensively modify and fine-tune these methods to achieve faster convergence, stable balance, and high-quality results. To shift the optimization community's focus towards performance rather than metaphorical changes, we propose a general population-based optimization technique called the Great Wall Construction Algorithm (GWCA). This study presents GWCA as a simple yet robust method with competitive performance for efficiently solving constrained and unconstrained problems. GWCA draws inspiration from the competition and elimination mechanisms observed among workers during the construction of the ancient Great Wall. It introduces a mathematical model of the labor movement to simulate the algorithm's dynamics. Unlike other methods that employ multiple models to generate new solutions, GWCA randomly assigns a single predefined motion model to each worker in every iteration. This unique approach showcases GWCA's dynamic nature, simple structure, high convergence performance, and ability to deliver satisfactory solution quality, thus outperforming existing optimization methods in terms of efficiency. To validate GWCA, we conduct extensive comparisons with popular and advanced algorithms on the IEEE CEC 2017 benchmark suite across different dimensions (D = 10, 30, 50, 100). Additionally, GWCA is applied to solve 16 constrained engineering problems and 6 NP-Hard problems, demonstrating its applicability in handling constrained and complex nonlinear problems. Finally, we compare GWCA's optimized solutions with those obtained from 33 advanced meta-heuristic algorithms, including the winner of CEC 2017. The results confirm the effectiveness of the proposed optimizer in solving a wide range of single-objective problems, surpassing popular base optimizers, advanced variants of existing methods, and several CEC winners. We present GWCA as an open-source population-based method that can serve as a standard optimization tool across various domains of artificial intelligence and machine learning. It exhibits a range of exploratory and exploitative features, offering high performance and optimization capabilities. The method is highly flexible, scalable, and can be further extended in terms of structure and application to accommodate diverse forms of optimization scenarios. https://github.com/guangian/Great-Wall-Construction-Algorithm-a-novel-meta-heuristic-algorithm-for-global-optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Msure完成签到,获得积分20
2秒前
共享精神应助欣慰的天荷采纳,获得10
2秒前
朴实冰姬发布了新的文献求助10
2秒前
2秒前
早日毕业发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
科研通AI5应助新之助采纳,获得30
4秒前
4秒前
Navial30发布了新的文献求助20
5秒前
6秒前
杳鸢应助火山蜗牛采纳,获得10
6秒前
科研小民工应助1234采纳,获得30
6秒前
feng发布了新的文献求助10
7秒前
聪慧乐儿完成签到 ,获得积分20
7秒前
夏天来了发布了新的文献求助50
7秒前
Gigi发布了新的文献求助10
8秒前
偶Henry发布了新的文献求助10
8秒前
隐形曼青应助0h采纳,获得10
8秒前
善学以致用应助Pendragon采纳,获得10
9秒前
www完成签到,获得积分10
11秒前
111发布了新的文献求助10
11秒前
11秒前
yz完成签到 ,获得积分10
12秒前
科研通AI5应助鱼儿采纳,获得30
12秒前
Lucas应助Msure采纳,获得10
12秒前
英俊的铭应助幸运之裤1111采纳,获得10
13秒前
实验好难应助Gigi采纳,获得10
15秒前
WFLLL发布了新的文献求助10
16秒前
体贴凌柏应助笨笨煎饼采纳,获得10
19秒前
钱多多完成签到,获得积分10
19秒前
ZZzz完成签到 ,获得积分10
21秒前
细腻飞鸟完成签到,获得积分10
23秒前
寒子川完成签到,获得积分20
23秒前
23秒前
田様应助junjun采纳,获得10
23秒前
23秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligomycin, a new antifungal antibiotic 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3583624
求助须知:如何正确求助?哪些是违规求助? 3152835
关于积分的说明 9494347
捐赠科研通 2855426
什么是DOI,文献DOI怎么找? 1569545
邀请新用户注册赠送积分活动 735372
科研通“疑难数据库(出版商)”最低求助积分说明 721212