Deep learning-based analysis of infrared fundus photography for automated diagnosis of diabetic retinopathy with cataracts

糖尿病性视网膜病变 医学 眼底(子宫) 白内障 人工智能 分级(工程) 眼科 验光服务 计算机科学 糖尿病 内分泌学 土木工程 工程类
作者
Wenwen Xue,Juzhao Zhang,Yingyan Ma,Junlin Hou,Fan Xiao,Rui Feng,Rui-Wei Zhao,Haidong Zou
出处
期刊:Journal of Cataract and Refractive Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:49 (10): 1043-1048 被引量:3
标识
DOI:10.1097/j.jcrs.0000000000001269
摘要

To develop deep learning-based networks for the diagnosis of diabetic retinopathy (DR) with cataracts based on infrared fundus images.Shanghai General Hospital, Shanghai Eye Disease Prevention & Treatment Center, Shanghai, China.Development and evaluation of an artificial intelligence (AI) diagnostic method.A total of 10 665 infrared fundus images from 4553 patients with diabetes were used to train and test the model. For image quality assessment, left and right eye classification, DR diagnosis and grading, and segmentation of 3 DR lesions, an end-to-end software using EfficientNet and UNet was developed. The accuracy and performance of the software in comparison to human experts was evaluated.The model achieved an accuracy of 75.31% for left and right eye classification, 100% for DR grading and diagnosis tasks, and 73.67% for internal test set, with corresponding areas under the curve (AUCs) of 0.88, 1.00, and 0.89, respectively. For DR lesion segmentation, the AUCs of hemorrhagic, microangioma, and exudative lesions were 0.86, 0.66, and 0.84, respectively. In addition, a contrast test of human-machine film reading confirmed the software's high sensitivity (96.3%) and specificity (90.0%) and consistency with the manual film reading group (κ = 0.869, P < .001). This easily deployable software generated reports quickly and promoted efficient DR screening with cataracts in clinical and community settings.AI-assisted software can perform automatic analysis of infrared fundus images and has substantial application value for the diagnosis of DR patients with cataracts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刻苦的黑米完成签到,获得积分10
1秒前
Acetonitrile应助long采纳,获得20
1秒前
落寒发布了新的文献求助10
1秒前
1秒前
小蘑菇应助HEIGE采纳,获得50
1秒前
1秒前
斯文败类应助王欣采纳,获得10
2秒前
Kk完成签到,获得积分10
2秒前
outbed完成签到,获得积分10
2秒前
月光寒发布了新的文献求助10
2秒前
无趣完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
元谷雪发布了新的文献求助10
3秒前
隐形曼青应助空想家采纳,获得10
4秒前
在水一方应助贺呵呵采纳,获得10
4秒前
xiaoxiao发布了新的文献求助10
4秒前
wen关闭了wen文献求助
4秒前
4秒前
5秒前
慢慢的地理人完成签到,获得积分10
5秒前
5秒前
enen发布了新的文献求助10
5秒前
lambda应助快乐小韩采纳,获得10
6秒前
6秒前
6秒前
7秒前
CipherSage应助张婷婷采纳,获得10
7秒前
8秒前
124578发布了新的文献求助10
8秒前
StellaZhang完成签到,获得积分10
8秒前
山木发布了新的文献求助10
8秒前
9秒前
9秒前
xiuxiu完成签到 ,获得积分10
10秒前
Jasper应助李憨憨采纳,获得10
10秒前
pct应助自然的砖头采纳,获得10
10秒前
Hello应助斯文的碧采纳,获得10
11秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254658
求助须知:如何正确求助?哪些是违规求助? 2896872
关于积分的说明 8294754
捐赠科研通 2565788
什么是DOI,文献DOI怎么找? 1393363
科研通“疑难数据库(出版商)”最低求助积分说明 652508
邀请新用户注册赠送积分活动 630044