AI Body Composition in Lung Cancer Screening: Added Value Beyond Lung Cancer Detection

医学 肺癌 肺癌筛查 全国肺筛查试验 体质指数 内科学 癌症 糖尿病 混淆 冠状动脉疾病 死因 心脏病学 疾病 内分泌学
作者
Kaiwen Xu,Mirza S. Khan,Thomas Z. Li,Riqiang Gao,James G. Terry,Yuankai Huo,Thomas A. Lasko,J. Jeffrey Carr,Fabien Maldonado,Bennett A. Landman,Kim L. Sandler
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (1) 被引量:8
标识
DOI:10.1148/radiol.222937
摘要

Background An artificial intelligence (AI) algorithm has been developed for fully automated body composition assessment of lung cancer screening noncontrast low-dose CT of the chest (LDCT) scans, but the utility of these measurements in disease risk prediction models has not been assessed. Purpose To evaluate the added value of CT-based AI-derived body composition measurements in risk prediction of lung cancer incidence, lung cancer death, cardiovascular disease (CVD) death, and all-cause mortality in the National Lung Screening Trial (NLST). Materials and Methods In this secondary analysis of the NLST, body composition measurements, including area and attenuation attributes of skeletal muscle and subcutaneous adipose tissue, were derived from baseline LDCT examinations by using a previously developed AI algorithm. The added value of these measurements was assessed with sex- and cause-specific Cox proportional hazards models with and without the AI-derived body composition measurements for predicting lung cancer incidence, lung cancer death, CVD death, and all-cause mortality. Models were adjusted for confounding variables including age; body mass index; quantitative emphysema; coronary artery calcification; history of diabetes, heart disease, hypertension, and stroke; and other PLCOM2012 lung cancer risk factors. Goodness-of-fit improvements were assessed with the likelihood ratio test. Results Among 20 768 included participants (median age, 61 years [IQR, 57-65 years]; 12 317 men), 865 were diagnosed with lung cancer and 4180 died during follow-up. Including the AI-derived body composition measurements improved risk prediction for lung cancer death (male participants: χ2 = 23.09, P < .001; female participants: χ2 = 15.04, P = .002), CVD death (males: χ2 = 69.94, P < .001; females: χ2 = 16.60, P < .001), and all-cause mortality (males: χ2 = 248.13, P < .001; females: χ2 = 94.54, P < .001), but not for lung cancer incidence (male participants: χ2 = 2.53, P = .11; female participants: χ2 = 1.73, P = .19). Conclusion The body composition measurements automatically derived from baseline low-dose CT examinations added predictive value for lung cancer death, CVD death, and all-cause death, but not for lung cancer incidence in the NLST. Clinical trial registration no. NCT00047385 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Fintelmann in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zz发布了新的文献求助10
刚刚
叉猹的闰土应助容若采纳,获得10
1秒前
1秒前
滴滴发布了新的文献求助10
2秒前
2秒前
藏獒发布了新的文献求助50
2秒前
复杂的立果完成签到 ,获得积分10
4秒前
陈黑手发布了新的文献求助10
5秒前
大模型应助9℃采纳,获得10
5秒前
汪汪发布了新的文献求助10
5秒前
5秒前
1L发布了新的文献求助10
6秒前
6秒前
灵巧高山应助诚心淇采纳,获得10
6秒前
山生有杏发布了新的文献求助10
6秒前
cc完成签到,获得积分10
6秒前
三三四发布了新的文献求助10
7秒前
天天快乐应助包容的剑采纳,获得10
7秒前
7秒前
8秒前
kk完成签到,获得积分10
8秒前
8秒前
9秒前
科研通AI5应助北北采纳,获得30
9秒前
浩想碎觉发布了新的文献求助10
10秒前
希望天下0贩的0应助北邸采纳,获得10
10秒前
11秒前
今后应助vivi采纳,获得10
11秒前
英俊的铭应助哈哈哈采纳,获得10
11秒前
11秒前
研友_8y2o0L完成签到,获得积分10
11秒前
小马甲应助汪汪采纳,获得10
12秒前
kk关闭了kk文献求助
13秒前
伊果爸爸完成签到,获得积分10
13秒前
科研通AI5应助aiueo采纳,获得10
13秒前
小兰花发布了新的文献求助10
13秒前
研友_8y2o0L发布了新的文献求助10
14秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554496
求助须知:如何正确求助?哪些是违规求助? 3130339
关于积分的说明 9386331
捐赠科研通 2829627
什么是DOI,文献DOI怎么找? 1555633
邀请新用户注册赠送积分活动 726197
科研通“疑难数据库(出版商)”最低求助积分说明 715484