YOLOv8-MPEB small target detection algorithm based on UAV images

计算机科学 人工智能 计算机视觉 算法
作者
Wenyuan Xu,Chuang Cui,Yongcheng Ji,Xiang Li,Shuai Li
出处
期刊:Heliyon [Elsevier]
卷期号:10 (8): e29501-e29501 被引量:7
标识
DOI:10.1016/j.heliyon.2024.e29501
摘要

Target detection in Unmanned Aerial Vehicle (UAV) aerial images has gained significance within UAV application scenarios. However, UAV aerial images present challenges, including large-scale changes, small target sizes, complex scenes, and variable external factors, resulting in missed or false detections. This study proposes an algorithm for small target detection in UAV images based on an enhanced YOLOv8 model termed YOLOv8-MPEB. Firstly, the Cross Stage Partial Darknet53 (CSPDarknet53) backbone network is substituted with the lightweight MobileNetV3 backbone network, consequently reducing model parameters and computational complexity, while also enhancing inference speed. Secondly, a dedicated small target detection layer is intricately designed to optimize feature extraction for multi-scale targets. Thirdly, the integration of the Efficient Multi-Scale Attention (EMA) mechanism within the Convolution to Feature (C2f) module aims to enhance the extraction of vital features and suppress superfluous ones. Lastly, the utilization of a bidirectional feature pyramid network (BiFPN) in the Neck segment serves to ameliorate detection errors stemming from scale variations and complex scenes, thereby augmenting model generalization. The study provides a thorough examination by conducting ablation experiments and comparing the results with alternative algorithms to substantiate the enhanced effectiveness of the proposed algorithm, with a particular focus on detection performance. The experimental outcomes illustrate that with a parameter count of 7.39M and a model size of 14.5MB, the algorithm attains a mean Average Precision (mAP) of 91.9% on the custom-made helmet and reflective clothing dataset. In comparison to standard YOLOv8 models, this algorithm elevates average accuracy by 2.2 percentage points, reduces model parameters by 34%, and diminishes model size by 32%. It outperforms other prevalent detection algorithms in terms of accuracy and speed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助ff采纳,获得10
刚刚
刚刚
洁净的老寿星完成签到,获得积分10
刚刚
Kikidouluvme发布了新的文献求助10
1秒前
1秒前
UBW发布了新的文献求助10
1秒前
科研通AI5应助yyf采纳,获得10
1秒前
zyzy1996完成签到,获得积分20
2秒前
上官若男应助Astralius采纳,获得10
3秒前
百里新梅发布了新的文献求助10
5秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Singularity应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
Singularity应助科研通管家采纳,获得10
7秒前
朴素草丛应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
烟花应助科研通管家采纳,获得30
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
Singularity应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得30
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
玫瑰发布了新的文献求助10
7秒前
今后应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
能量球完成签到,获得积分20
8秒前
煎饼狗子发布了新的文献求助10
8秒前
9秒前
云游归尘完成签到 ,获得积分0
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483894
求助须知:如何正确求助?哪些是违规求助? 3073070
关于积分的说明 9129389
捐赠科研通 2764810
什么是DOI,文献DOI怎么找? 1517349
邀请新用户注册赠送积分活动 702089
科研通“疑难数据库(出版商)”最低求助积分说明 700954