ULTRA-SR Challenge: Assessment of Ultrasound Localization and TRacking Algorithms for Super-Resolution Imaging

基本事实 水准点(测量) 跟踪(教育) 计算机科学 软件 计算机视觉 人工智能 算法 领域(数学) 机器学习 数据挖掘 数学 大地测量学 心理学 教育学 纯数学 程序设计语言 地理
作者
Marcelo Lerendegui,Kai Riemer,Γεώργιος Παπαγεωργίου,Bingxue Wang,Lachlan Arthur,Arthur Chavignon,Tao Zhang,Olivier Couture,Pingtong Huang,Md Ashikuzzaman,Stefanie Dencks,Chris Dunsby,Brandon Helfield,Jørgen Arendt Jensen,Thomas Lisson,Matthew R. Lowerison,Hassan Rivaz,Anthony E. Samir,Georg Schmitz,Scott Schoen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 2970-2987 被引量:16
标识
DOI:10.1109/tmi.2024.3388048
摘要

With the widespread interest and uptake of super-resolution ultrasound (SRUS) through localization and tracking of microbubbles, also known as ultrasound localization microscopy (ULM), many localization and tracking algorithms have been developed. ULM can image many centimeters into tissue in-vivo and track microvascular flow non-invasively with sub-diffraction resolution. In a significant community effort, we organized a challenge, Ultrasound Localization and TRacking Algorithms for Super-Resolution (ULTRA-SR). The aims of this paper are threefold: to describe the challenge organization, data generation, and winning algorithms; to present the metrics and methods for evaluating challenge entrants; and to report results and findings of the evaluation. Realistic ultrasound datasets containing microvascular flow for different clinical ultrasound frequencies were simulated, using vascular flow physics, acoustic field simulation and nonlinear bubble dynamics simulation. Based on these datasets, 38 submissions from 24 research groups were evaluated against ground truth using an evaluation framework with six metrics, three for localization and three for tracking. In-vivo mouse brain and human lymph node data were also provided, and performance assessed by an expert panel. Winning algorithms are described and discussed. The publicly available data with ground truth and the defined metrics for both localization and tracking present a valuable resource for researchers to benchmark algorithms and software, identify optimized methods/software for their data, and provide insight into the current limits of the field. In conclusion, Ultra-SR challenge has provided benchmarking data and tools as well as direct comparison and insights for a number of the state-of-the art localization and tracking algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
帅气凝海发布了新的文献求助30
1秒前
22完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
学术脑袋发布了新的文献求助10
4秒前
lifangqi完成签到,获得积分20
5秒前
6秒前
6秒前
hannah完成签到,获得积分10
7秒前
酸奶烤着吃完成签到,获得积分10
8秒前
Owen应助391X小king采纳,获得10
9秒前
9秒前
小古完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
梦幻发布了新的文献求助10
11秒前
楚博完成签到,获得积分10
11秒前
Am1r完成签到,获得积分10
11秒前
hannah发布了新的文献求助20
12秒前
赵康康发布了新的文献求助10
12秒前
蒸盐粥发布了新的文献求助10
15秒前
15秒前
17秒前
18秒前
实验顺利完成签到,获得积分10
19秒前
不期而遇发布了新的文献求助10
19秒前
19秒前
我是老大应助拼搏的无心采纳,获得10
20秒前
21秒前
21秒前
烟花应助hay采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
XUXU发布了新的文献求助10
22秒前
老黄鱼完成签到,获得积分10
23秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
顺心的海菡完成签到,获得积分10
24秒前
亦犹未进发布了新的文献求助10
26秒前
Ljq发布了新的文献求助10
27秒前
ahhh发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729235
求助须知:如何正确求助?哪些是违规求助? 5317147
关于积分的说明 15316199
捐赠科研通 4876228
什么是DOI,文献DOI怎么找? 2619311
邀请新用户注册赠送积分活动 1568858
关于科研通互助平台的介绍 1525365